

DEPARTMENT OF WATER AND SANITATION **REPUBLIC OF SOUTH AFRICA**

DUE AT 11:00 ON

22 DECEMBER 2017

BID NO. W11268

NGQAMAKAWE REGIONAL SUPPLY SCHEME PHASE 5

CIVIL/MECHANICAL/ELECTRICAL CONTRACT

BUTTERWORTH EMERGENCY SUPPLY SCHEME

VOLUME 4: SITE INFORMATION

SUBMIT BID DOCUMENTS

то

DIRECTOR-GENERAL: DEPARTMENT WATER

AND SANITATION PRIVATE BAG X313 PRETORIA, 0001

POSTAL ADDRESS:

OR

TO BE DEPOSITED IN: THE BID BOX AT THE ENTRANCE OF ZWAMADAKA BUILDING 157 FRANCIS BAARD STREET PRETORIA, 0002

ATTENTION:

DIVISION: PROCUREMENT AND PSP ADMINISTRATION ZWAMADAKA BUILDING ZWAMADAKA ENTRANCE

BIDDER: (Company address and stamp)

NGQAMAKAWE REGIONAL SUPPLY SCHEME PHASE 5

BID NO. W11268

BUTTERWORTH EMERGENCY SUPPLY SCHEME

LIST OF VOLUMES

VOLUME 1:

THE TENDER

PART T1:	TENDERING PROCEDURES
T1.1	Tender Notice and Invitation to Tender
T1.2	Tender Data
T1.3	Conditions of Tender and Tender Data
PART T2:	RETURNABLE DOCUMENTS
T2.1	List of Returnable Documents
T2.2	Returnable Schedules

VOLUME 2:

THE CONTRACT

PART C1:	AGREEMENTS AND CONTRACT DATA
C1.1	Form of Offer and Acceptance
C1.2	Contract Data
C1.3	Form of Performance Security
C1.4	OHS Mandatary Form
C1.5	Certificate of Ownership of Goods
PART C2:	PRICING DATA
C2.1	Pricing Instructions: Civil Works and Building Works
C2.2	Pricing Instructions: Mechanical and Electrical Works - Pump Station
C2.3	Schedule of Imported Equipment
C2.4	Bill of Quantities

CONTENTS

VOLUME 3:

PART C3:	SCOPE OF WORKS
C3.1	Project Specifications
C3.2	Amendments to Particular Specifications
C3.3	Particular Specifications
C3.4	Amendments to Standard Specifications
C3.5	Standard Specifications

VOLUME 4, This Volume comprising:

PART C4:	SITE INFORMATION
C4.1	Site Information
PART C5:	APPENDICES

VOLUME 5:

PART C6: DRAWINGS

NGQAMAKWE REGIONAL SUPPLY SCHEME PHASE 5

BID NO. W11268 BUTTERWORTH EMERGENCY SUPPLY SCHEME

VOLUME 4

PART C4 – SITE INFORMATION

PART C4: SITE INFORMATION

- C4.1: Geotechnical Investigation Report
- C4.2: Heritage Investigation Report
- C4.3: Aquatic Investigation Report
- C4.4: Geomorphological Investigation

PART C4.1: GEOTECHNICAL INVESTIGATION REPORT

CLIENT:	AURECON SA (PTY) LTD
PROJECT:	NGQAMAKHWE RWSS: PHASE 5
DATE:	JULY 2017
REFERENCE:	MT32019

Compiled by: Controlab South Africa (Pty) Ltd D Louw Pr Tech Eng, MSc (Civil)

AN ENGINEERING GEOLOGICAL DESKTOP INVESTIGATION FOR THE PROPOSED PHASE 5, NGQAMAKHWE EASTERN CAPE PROVINCE.

REPORT REFERENCE: MT32019

JULY 2017

CONTENTS:

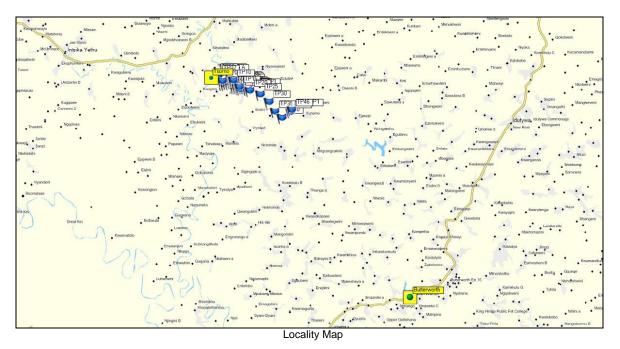
1. IN	TRODUCTION	1
1.1 1.2	TERMS OF REFERENCE	
2. SI	TE DESCRIPTION	1
2.1 2.2	LOCATION CLIMATE	1 2
3. IN	VESTIGATION PROCEDURE	2
3.1 3.2 3.3	PUMP STATION POSITIONS RESERVOIR POSITIONS PIPELINE POSITIONS	5
4. G	EOLOGY	11
4.1	REGIONAL GEOLOGY	11
5. El	NGINEERING GEOLOGICAL EVALUATION	13
5.1 5.2 5.3 5.4 5.5 5.6 5.7	PUMP STATION POSITION 1 PUMP STATION POSITION 2 PUMP STATION ALTERNATIVE POSITION RESERVOIR POSITION ALTERNATIVE RESERVOIR POSITION MAIN PIPELINE ALTERNATIVE PIPELINE	16 18 20 23 25
6. C	ONCLUSIONS AND RECOMMENDATIONS	34
7. R	EFERENCES	35

1. INTRODUCTION

1.1 Terms of Reference

Controlab South Africa (Pty) Ltd was appointed by Aurecon SA (Pty) Ltd to perform a geotechnical investigation on the proposed water supply project. The purpose of the project was to install a 16km rising main pipeline from the town of Tsomo to a boundary location for a reservoir. The water would be pumped in two (2) stages to an elevation of approximately 1200m The geotechnical report will focus on three (3) aspects of the project namely the:

- > Pump station position (pump station 1, 2 as well as an alternative position)
- Reservoir site position (one (1) site as well as one (1) alternative position)
- Pipeline and alternative pipeline


1.2 Available Information

- Site Layout Plan
- Geological Map: 3026 Aliwal North Chief Director of Surveys and Mapping: Scale 1:250000

2. SITE DESCRIPTION

2.1 Location

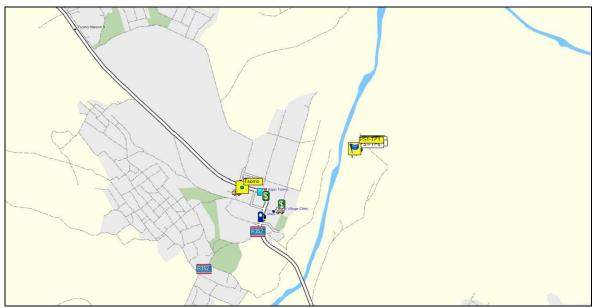
The project was situated in the Amathole District Municipality within the Eastern Cape Province. The project started close to the town of Tsomo and would provide water through a gravity feed pipeline to the entire Ngqamakhwe region. The town of Tsomo was approximately 40km North West of Butterworth.

2.2 Climate

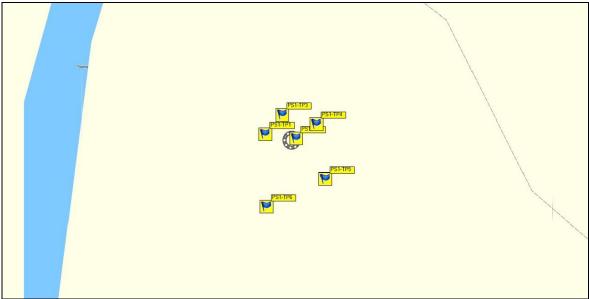
Tsomo normally receives about 536mm of rain per year, with most rainfall occurring mainly during summer. It receives the lowest rainfall (5mm) in July and the highest (85mm) in March. The monthly distribution of average daily maximum temperatures range from 18.1°C in June to 26°C in February. The region is the coldest during July when the temperature drops to 3.7°C on average during the night.

Wienerts climatic N number for the area is between 2 and 5, which should indicate that the rocks would decompose implying that chemical weathering would dominate over mechanical weathering.

3. INVESTIGATION PROCEDURE


During the field investigations, various trial pits were excavated. At these positions, Dynamic Cone Penetrometer (DCP) tests were performed. The trial pits were profiled by a qualified Engineering Technician utilising "Guidelines for Soil and Rock Logging in South Africa" produced by ABA Brink and RMH Bruin.

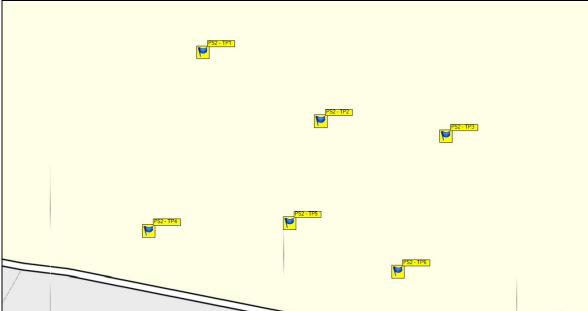
Depending on the requirement for the structure or pipeline, samples were taken for various tests including Road Indicator tests, Compactability, Foundation Indicator, Tri-axial and Consolidation tests. Along the pipeline routes, soil resistivity tests were performed to determine the corrosive nature of the soils.


3.1 **Pump Station Positions**

The co-ordinates for the various trial pits exacted at the pump station positions were as follows:

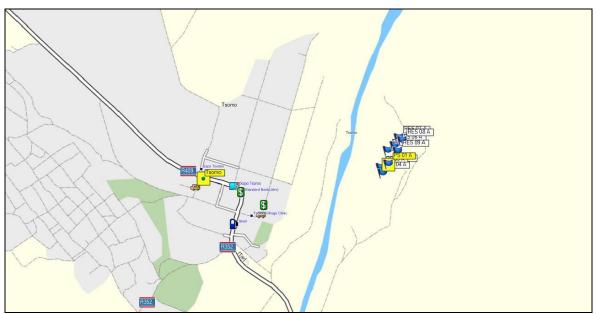
POSITION	CO-ORDINATE	
PUMP STATION 1		
Pump Station 1 Trial Hole 1	S 32°02'07.3" E 27°49'36.3"	
Pump Station 1 Trial Hole 2	S 32°02'07.4" E 27°49'36.8"	
Pump Station 1 Trial Hole 3	S 32°02'07.0" E 27°49'36.6"	
Pump Station 1 Trial Hole 4	S 32°02'07.2" E 27°49'37.1"	
Pump Station 1 Trial Hole 5	S 32°02'07.9" E 27°49'37.3"	
Pump Station 1 Trial Hole 6	S 32°02'08.3" E 27°49'36.3"	

Pump Station 1 - Locality

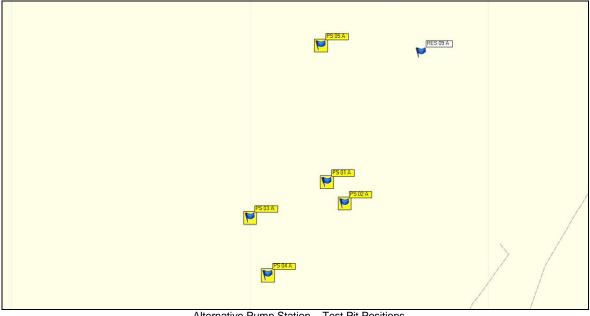


Pump Station 1 – Test Pit Positions

PUMP STATION 2		
Pump Station 2 Trial Hole 1	S 32°03'20.1" E 27°52'37.7"	
Pump Station 2 Trial Hole 2	S 32°03'21.0" E 27°52'39.7"	
Pump Station 2 Trial Hole 3	S 32°03'21.2" E 27°52'41.9"	
Pump Station 2 Trial Hole 4	S 32°03'22.6" E 27°52'36.7"	
Pump Station 2 Trial Hole 5	S 32°03'22.5" E 27°52'39.2"	
Pump Station 2 Trial Hole 6	S 32°03'23.2" E 27°52'41.1"	



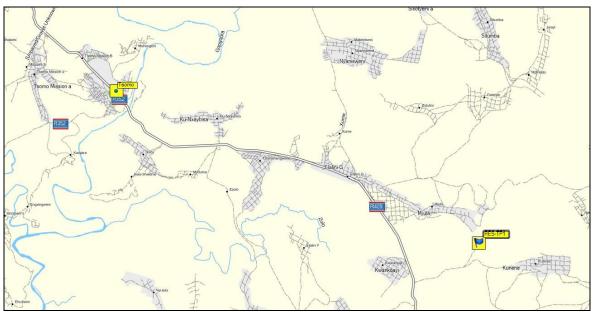
Pump Station 2 – Locality



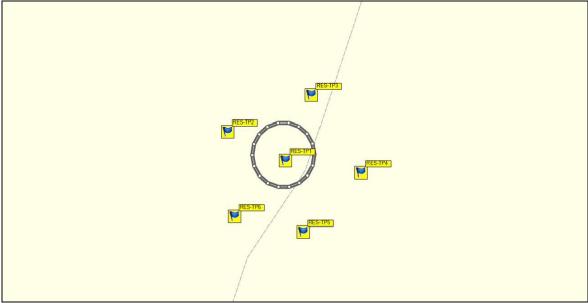
Pump Station 2 - Test Pit Positions

ALTERNATIVE PUMP STATION		
Pump Station 1 Trial Hole 1A	S 32°02'13.7" E 27°49'38.5"	
Pump Station 1 Trial Hole 2A	S 32°02'14.0" E 27°49'38.8"	
Pump Station 1 Trial Hole 3A	S 32°02'14.2" E 27°49'37.2"	
Pump Station 1 Trial Hole 4A	S 32°02'15.0" E 27°49'37.5"	
Pump Station 1 Trial Hole 5A	S 32°02'11.8" E 27°49'38.4"	

Alternative Pump Station - Locality



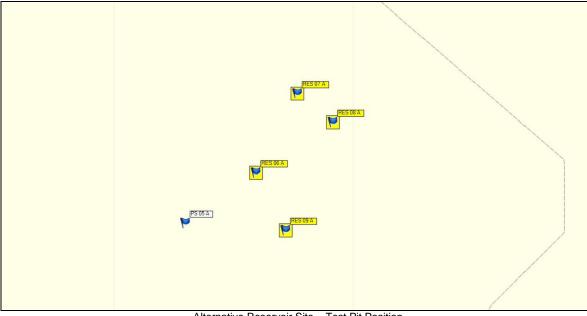
Alternative Pump Station - Test Pit Positions


3.2 **Reservoir Positions**

Two (2) reservoir sites were included in the investigation and the co-ordinates were as follows:

POSITION	CO-ORDINATE	
RESERVOIR SITE		
Reservoir Trial Hole 1	S 32°04'56.9" E 27°56'56.9"	
Reservoir Trial Hole 2	S 32°04'56.5" E 27°56'55.9"	
Reservoir Trial Hole 3	S 32°04'56.0" E 27°56'57.3"	
Reservoir Trial Hole 4	S 32°04'57.1" E 27°56'58.2"	
Reservoir Trial Hole 5	S 32°04'57.9" E 27°56'57.2"	
Reservoir Trial Hole 6	S 32°04'57.7" E 27°56'56.0"	

Reservoir Site – Locality



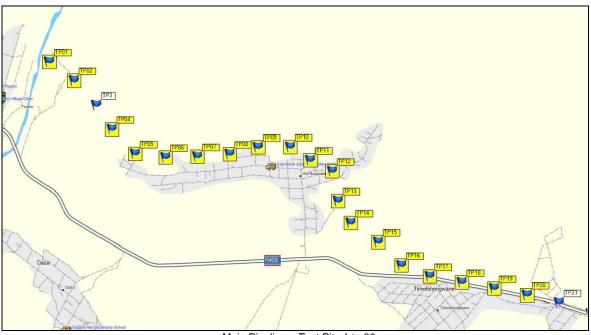
Reservoir Site - Test Pit Position

ALTERNATIVE RESERVOIR SITE	
Reservoir Trial Hole 6A	S 32°02'11.1" E 27°49'39.6"
Reservoir Trial Hole 7A	S 32°02'10.0" E 27°49'40.3"
Reservoir Trial Hole 8A	S 32°02'10.4" E 27°49'40.9"
Reservoir Trial Hole 9A	S 32°02'11.9" E 27°49'40.1"

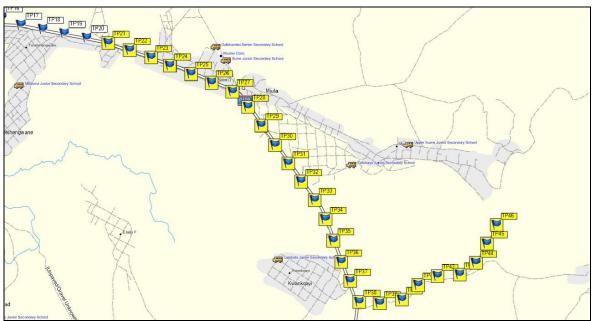
Alternative Reservoir Site - Locality

Alternative Reservoir Site – Test Pit Position

3.3 **Pipeline Positions**

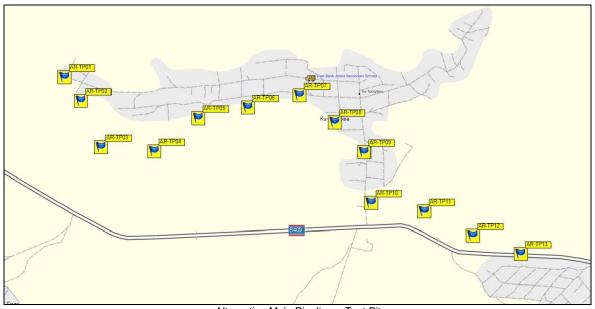

The co-ordinates for the trial pits excavated for the pipeline was as follows:

POSITION	CO-ORDINATE
Main Pipeline Trial Hole 01	S 32°02'07.7" E 27°49'36.7"
Main Pipeline Trial Hole 02	S 32°02'13.9" E 27°49'46.7"
Main Pipeline Trial Hole 03	S 32°02'22.0" E 27°49'55.8"
Main Pipeline Trial Hole 04	S 32°02'30.1" E 27°50'02.0"
Main Pipeline Trial Hole 05	S 32°02'38.2" E 27°50'11.5"
Main Pipeline Trial Hole 06	S 32°02'39.4" E 27°50'23.7"
Main Pipeline Trial Hole 07	S 32°02'39.1" E 27°50'36.8"
Main Pipeline Trial Hole 08	S 32°02'38.2" E 27°50'49.8"
Main Pipeline Trial Hole 09	S 32°02'36.0" E 27°51'01.3"


POSITION	CO-ORDINATE
Main Pipeline Trial Hole 10	S 32°02'35.9" E 27°51'14.3"
Main Pipeline Trial Hole 11	S 32°02'40.3" E 27°51'22.5"
Main Pipeline Trial Hole 12	S 32°02'44.0" E 27°51'31.3"
Main Pipeline Trial Hole 13	S 32°02'53.8" E 27°51'33.7"
Main Pipeline Trial Hole 14	S 32°03'01.1" E 27°51'38.9"
Main Pipeline Trial Hole 15	S 32°03'07.5" E 27°51'49.9"
Main Pipeline Trial Hole 16	S 32°03'15.2" E 27°51'59.4"
Main Pipeline Trial Hole 17	S 32°03'18.9" E 27°52'10.8"
Main Pipeline Trial Hole 18	S 32°03'20.9" E 27°52'23.9"
Main Pipeline Trial Hole 19	S 32°03'22.9" E 27°52'37.0"
Main Pipeline Trial Hole 20	S 32°03'25.1" E 27°52'50.3"
Main Pipeline Trial Hole 21	S 32°03'27.6" E 27°53'03.3"
Main Pipeline Trial Hole 22	S 32°03'31.2" E 27°53'16.1"
Main Pipeline Trial Hole 23	S 32°03'34.8" E 27°53'29.0"
Main Pipeline Trial Hole 24	S 32°03'38.9" E 27°53'40.3"
Main Pipeline Trial Hole 25	S 32°03'43.0" E 27°53'53.0"
Main Pipeline Trial Hole 26	S 32°03'47.2" E 27°54'05.4"
Main Pipeline Trial Hole 27	S 32°03'51.6" E 27°54'17.9"
Main Pipeline Trial Hole 28	S 32°03'59.1" E 27°54'27.2"
Main Pipeline Trial Hole 29	S 32°04'08.3" E 27°54'35.2"
Main Pipeline Trial Hole 30	S 32°04'17.9" E 27°54'43.5"
Main Pipeline Trial Hole 31	S 32°04'27.0" E 27°54'51.3"
Main Pipeline Trial Hole 32	S 32°04'35.9" E 27°54'59.1"
Main Pipeline Trial Hole 33	S 32°04'45.0" E 27°55'07.3"
Main Pipeline Trial Hole 34	S 32°04'54.1" E 27°55'13.7"
Main Pipeline Trial Hole 35	S 32°05'05.0" E 27°55'18.4"
Main Pipeline Trial Hole 36	S 32°05'15.4" E 27°55'23.2"
Main Pipeline Trial Hole 37	S 32°05'25.0" E 27°55'28.6"
Main Pipeline Trial Hole 37	S 32°05'35.8" E 27°55'46.4"
Main Pipeline Trial Hole 38	S 32°05'35.1" E 27°55'34.1"
Main Pipeline Trial Hole 40	S 32°05'33.0" E 27°55'59.7"
Main Pipeline Trial Hole 41	S 32°05'26.9" E 27°56'09.6"
Main Pipeline Trial Hole 42	S 32°05'22.5" E 27°56'21.0"
Main Pipeline Trial Hole 43	S 32°05'21.7" E 27°56'34.5"
Main Pipeline Trial Hole 44	S 32°05'15.9" E 27°56'44.2"
Main Pipeline Trial Hole 45	S 32°05'06.4" E 27°56'50.7"
Main Pipeline Trial Hole 46	S 32°04'57.3" E 27°56'56.6"

Main Pipeline – Locality

Main Pipeline - Test Pits 1 to 20


Main Pipeline - Test Pits 21 to 46

The co-ordinates for the alternative pipeline were as follows

POSITION	CO-ORDINATE
AR Trial Hole 01	S 32°02'42.3" E 27°50'04.7"
AR Trial Hole 02	S 32°02'47.1" E 27°50'08.8"
AR Trial Hole 03	S 32°02'56.6" E 27°50'14.0"
AR Trial Hole 04	S 32°02'57.5" E 27°50'27.3"
AR Trial Hole 05	S 32°02'50.7" E 27°50'38.3"
AR Trial Hole 06	S 32°02'45.5" E 27°50'50.8"
AR Trial Hole 07	S 32°02'46.0" E 27°51'03.7"
AR Trial Hole 08	S 32°02'51.5" E 27°51'12.5"
AR Trial Hole 09	S 32°02'57.7" E 27°51'20.0"
AR Trial Hole 10	S 32°03'08.1" E 27°51'21.7"
AR Trial Hole 11	S 32°03'09.8" E 27°51'35.0"
AR Trial Hole 12	S 32°03'14.8" E 27°51'47.2"
AR Trial Hole 13	S 32°03'18.5" E 27°51'59.2"

Alternative Main Pipeline – Locality

Alternative Main Pipeline – Test Pits

4. GEOLOGY

4.1 Regional Geology

The proposed pipeline near Tsomo is set to be implemented within the Katberg Formation. This unit belongs to the Karoo Supergroup.

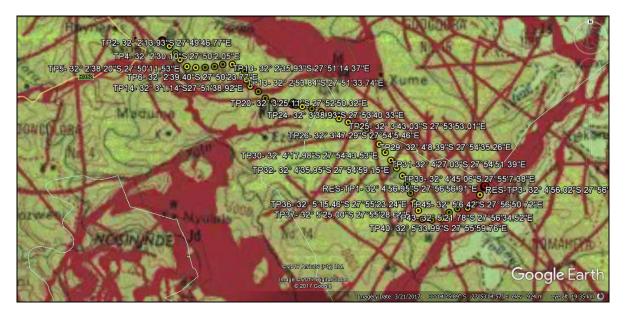
The Katberg Formation forms part of the Tarkastad Subgroup of the Beaufort Group belonging to the greater Karoo Basin. The Tarkastad Subgroup is characterized by a greater abundance of both sandstone and red mudstone than the Adelaide Subgroup. The boundary between these subgroups is the only line that can be traced with certainty throughout the Karoo Basin.

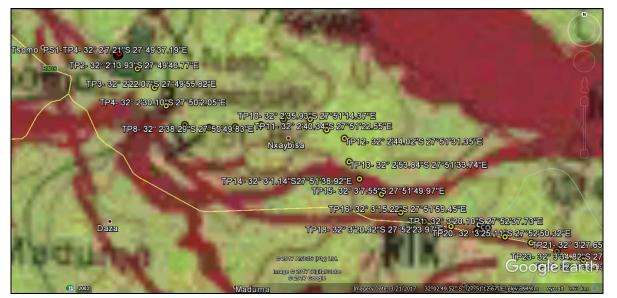
The Katberg Formation is known to be sandstone rich and constitutes over 90% of the Formations makeup in cases where the Katberg Formation is found in coastal localities near East London. However, inland exposures have a more equal division of sandstone and mudstone. In the North, the mudstone becomes excessive and difficulty in distinguishing it from the Burgersdorp Formation may occur. The Katberg is just over 900m thick in most cases.

Sandstones of the Katberg Formation are fine to medium grained with scattered pebbles up to 150mm in diameter, (common in coastal exposures). Generally, the rocks are light brown to grey or greenish grey in colour with strong horizontal laminations, parting lineations, trough cross bedding and planar cross bedding characteristics.

Oval shaped calcareous concretions between 30 and 100mm in diameter are common with a preferred orientation in a parallel direction to the palaeoslope present at deposition.

Post depositional dolerite intrusions are present as well. The dolerite intrusions may occur as either, horizontal sills and lenses or vertical dykes which cut through the sedimentary layers. Furthermore, the vertical dykes cut through the horizontal sills.


Azimuth and dip of the bedding planes is typical of the Karoo Basin and although area specific, shows a general trend of a north easterly azimuth with a dip of between 1° and 4°


Jointing of the Katberg Formation is not unlike the rest of the Karoo basin and displays distinct jointing planes in three major directions. This results in residual boulders whose size is related to the spacing of the joint patterns. Joint spacing is controlled by the bedding brittleness and degree of deformation experienced.

Intrusive dolerite sills are common throughout the Karoo Supergroup and occur as undulating horizontally inclined sheets of mafic, igneous rock forming ring structures at the surface.

Dolerite is expected to be encountered at TP4, 14, 15, 17 - 28, 43 - 46 as well as at the reservoir site.

No faulting, folding or other deformation events are evident from the 1:250 000 geological map of King Williams Town 3226.

5. ENGINEERING GEOLOGICAL EVALUATION

5.1 Pump Station Position 1

Soil Profiles

The material encountered at the position for the pump station generally consisted of thick horizons of transported silty sand or sandy silt. The moisture conditions were moist, the consistency soft becoming firm and the structures were intact. At TP1, TP2 and TP3 dolerite boulders were profiled within the transported horizons.

Residual material was only encountered at TP6. The material consisted of highly weathered sandstone. The moisture conditions were moist, the consistency soft becoming hard and the structure micro shattered.

No ground water seepage was recorded in any of the trial pits.

Excavation

Excavations were done by machine and the excavation depths were as follows:

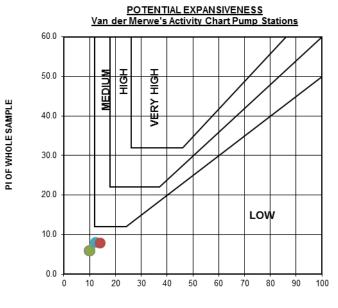
\succ	Pump Station 1	Trial Hole 1	No refusal @ 3900mm
\triangleright	Pump Station 1	Trial Hole 2	No refusal @ 3900mm
\triangleright	Pump Station 1	Trial Hole 3	No refusal @ 3900mm
\triangleright	Pump Station 1	Trial Hole 4	No refusal @ 2900mm
\triangleright	Pump Station 1	Trial Hole 5	No refusal @ 2900mm
\triangleright	Pump Station 1	Trial Hole 6	No refusal @ 3900mm

Excavations at the pump station position can be classified as being soft.

Test Results

Road Indicator

Six (6) disturbed samples were taken to determine the suitability of the material to be used during construction. The material conformed to a G8 material classification indicating that material similar to the samples tested would be suitable for use as backfill or material required for platforms.


POSITION	DEPTH	DESCRIPTION	G. M.	r L (%)	P I (%)	r s (%)	MDD (kg/m3)	OMC (%)	C.B.R. @ 100%	C.B.R. @ 95 %	C.B.R. @ 90 %	SWELL (%)	TRH14 CLASS
PS1 / TP 1	600 - 2900	It R sdy st	0.52	20	6	3.5	1934	11.1	63	38	20	0.40	G8
PS1 / TP 2	1200 - 2700	It R sdy st	0.57	20	5	2.0	1920	10.7	55	26	12	0.60	G8
PS1 / TP 3	950 - 2900	It R sdy st	0.49	21	8	4.5	1924	12.2	61	25	10	0.60	G8
PS1 / TP 4	400 - 900	lt R sdy st	0.8	22	7	3.0	1947	11.6	50	31	18	0.70	G8
PS1 / TP 5	500 - 2900	It R sdy st	0.6	23	8	3.5	1951	10.9	60	28	13	0.40	G8
PS1 / TP 6	1200 - 3900	It R high weath Ss + sdy st	0.7	22	8	3.5	1917	11.0	68	32	15	0.40	G8

Foundation Indicator

Disturbed samples were tested to determine the risk associated with heave. The results indicated that there was a low potential risk for expansive material.

NOITISOA	DEPTH	DESCRIPTION	0.002 mm	LINEAR SHRINKAGE	PI WHOLE SAMPLE	POTENTIAL EXPANSIVENESS
PS1/TP 4	400 - 900	lt R sdy st	10	3.0	6.0	LOW
PS1/TP 5	500 - 2900	lt R sdy st	14	3.5	8.0	LOW
PS1/TP 6	1200 - 3900	It R high weath Ss + sdy st	12	3.5	8.0	LOW

The expansiveness of the horizons tested was evaluated using Van der Merwe's method of classification. The PI of the whole sample varied between 6 and 8 with the clay fraction (0.002mm sieve) varied between 10% and 14%.

CLAY FRACTION OF WHOLE SAMPLE (< 2 um)

Tri-axial and Consolidation Tests

Two undisturbed samples were taken of the thick sandy silt horizons to determine the apparent cohesion, internal angle of friction and risk of consolidation.

The tri-axial tests indicated that the apparent cohesion of the silt varied between 85kPa to 320kPa with the corresponding internal angle of frictions 33° and 26°.

The consolidation tests indicated a high risk with regards to collapse / settlement and care must be taken in the platform and foundation design for the pump station.

POSITION	PS1-TH3				
DEPTH	950-2900mm				
SAMPLE DESCRIPTION	dk Y O sdy st				
COLLAPSE	9.72%				
POSITION	PS1-TH2				
DEPTH	2700-3900mm				
SAMPLE DESCRIPTION	dk Y O sdy st				
COLLAPSE	3.32%				

Pinhole Test

Nine samples were tested according the ASTM D4221-90 test method to determine the dispersive grade classification of the soils. The results indicated the grade of dispersiveness varied between ND1, D1 and D2. It must be noted that due to the collapse risk of the material the dispersive test results should be read in conjunction with the soil parameters such as grading and Atterberg Limits.

Crumb Test

Three samples were tested in the crumb tests and the results indicated a low risk of dispersiveness.

Dynamic Cone Penetrometer Tests

The DCP tests indicated that the estimated safe bearing pressure at depth in excess of 500mm was in excess of 150kPa. The Use and Interpretation of the Dynamic Cone Penetrometer (Dcp) Test by P Paige-Green and L Du Plessis was used to determine the estimated safe bearing pressure from the DCP penetration rate. Note that the DCP penetration rate will change with any changes to the moisture content or density of the material tested.

5.2 Pump Station Position 2

Soil Profiles

The material encountered at the position for the pump station two generally consisted of transported silty sand. The moisture conditions were moist, the consistency soft becoming firm and the structures were intact.

Residual material was encountered at all trial pit positions and consisted of weathered sandstone. The moisture conditions were slightly moist, the consistency hard and the structure micro shattered.

No ground water seepage was recorded in any of the trial pits.

Excavation

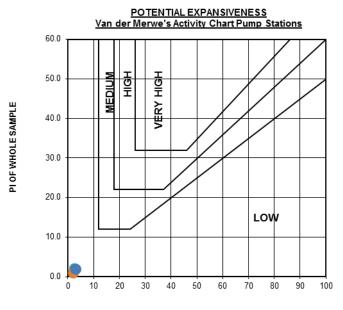
Excavations were done by machine and the excavation depths were as follows:

\triangleright	Pump Station 2	Trial Hole 1	Refusal @ 1100mm on sandstone plate
\succ	Pump Station 2	Trial Hole 2	Refusal @ 660mm on sandstone plate
\triangleright	Pump Station 2	Trial Hole 3	Refusal @ 400mm on sandstone plate
\triangleright	Pump Station 2	Trial Hole 4	Refusal @ 300mm on sandstone plate
\triangleright	Pump Station 2	Trial Hole 5	Refusal @ 960mm on sandstone plate
\triangleright	Pump Station 2	Trial Hole 6	Refusal @ 1230mm on sandstone plate

Test Results

Road Indicator

Five (5) disturbed samples were taken to determine the suitability of the material to be used during construction.


POSITION	ДЕРТН	DEGINAR BIT SS + STV S		r L (%)	P I (%)	L S (%)	MDD (kg/m3)	OMC (%)	C.B.R. @ 100%	C.B.R. @ 95 %	C.B.R. @ 90 %	SWELL (%)	TRH14 CLASS
PS 2 - TP 1	850 - 1100	dk R Br Ss + sty s	2.4	23	8	4.5	2124	8.3	81	40	20	0.40	G6
PS2 - TP 2	110 - 350	dk R Br weath Ss + sty s	2.52	CBD	SP	1.5	2061	9.0	76	36	17	0.10	G6
PS 2 - TP 5	600 - 960	It R O Ss + cly s	2.5	28	15	7.5	2120	9.3	93	40	17	0.6	G6
PS2 - TP 6	580 - 1100	It R O Ms + cly s	2.69	33	16	8.0	2074	9.7	69	29	13	0.50	G6
PS 2 - TP 6	1100 - 1230	It R O Ms + cly s	2.4	23	11	5.5							

The material conformed to a G6 material classification indicating that material similar to the samples tested would be suitable for use as backfill or material required for platforms.

Foundation Indicator

Disturbed samples were tested to determine the risk associated with heave. The results indicated that there was a low potential risk for expansive material.

NOITION	DEPTH	DESCRIPTION	0.002 mm	LINEAR SHRINKAGE	PI WHOLE SAMPLE	POTENTIAL EXPANSIVENESS
PS2 - TP 1	850 - 1100	dk R Br Ss + sty s	3	4.5	2.0	LOW
PS2 - TP 5	600 - 960	lt R O Ss + cly s	3	7.5	2.0	LOW
PS2 - TP 6	1100 - 1230	It R O Ms + cly s	2	5.5	1.0	LOW

CLAY FRACTION OF WHOLE SAMPLE (< 2 um)

The expansiveness of the horizons tested was evaluated using Van der Merwe's method of classification. The PI of the whole sample varied between 1 and 2 with the clay fraction (0.002mm sieve) varied between 2% and 3%.

Dynamic Cone Penetrometer Tests

The DCP tests indicated that the estimated safe bearing pressure at depth in excess of 500mm was in excess of 250kPa. The DCP tests recorded penetration refusals at all test positions. The Use and Interpretation of the Dynamic Cone Penetrometer (Dcp) Test by P Paige-Green and L Du Plessis was used to determine the estimated safe bearing pressure

from the DCP penetration rate. Note that the DCP penetration rate will change with any changes to the moisture content or density of the material tested.

5.3 Pump Station Alternative Position

Soil Profiles

The material encountered at the position for the alternative pump station generally consisted of transported clayey or sandy silt. The moisture conditions were slightly moist, the consistency soft becoming firm and the structures varied between intact, slickensided and fissured.

Residual material was encountered at all trial pit positions and varied between sandstone and shale. The moisture conditions were slightly moist, the consistency extremely hard and the structure shattered.

Although no ground water seepage was recorded in any of the trial pits the fissured structure of the transported horizons were indicative of fluctuating water tables.

Excavation

Excavations were done by machine and the excavation depths were as follows:

Pump Station 1
 Pump Station 1
 Pump Station 1
 Trial Hole 2A
 Pump Station 1
 Pump Station 1
 Trial Hole 4A
 Pump Station 1
 Trial Hole 5A

Refusal @ 2100mm on sandstone Refusal @ 1200mm on sandstone Refusal @ 3400mm on shale Refusal @ 2200mm on sandstone

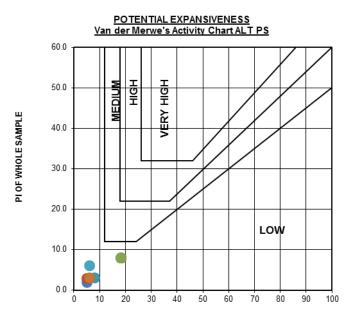
Refusal @ 1400mm on sandstone

Test Results

Road Indicator

Six (6) disturbed samples were taken to determine the suitability of the material to be used during construction.

POSITION	ДЕРТН	DESCRIPTION		L L (%)	P I (%)	L S (%)	MDD (kg/m3)	OMC (%)	C.B.R. @ 100%	C.B.R. @ 95 %	C.B.R. @ 90 %	SWELL (%)	TRH14 CLASS
PS1/TP 1A	1700 - 2100	lt Br Ss + sty s	2.4	23	11	5.5	2140	8.2	58	27	13	0.20	G6
PS1/TP 2A	400 - 1000	Pale R sdy st	0.6	18	6	3.5	1922	10.8	30	14	7	0.40	G8
PS1/TP 2A	1000 - 1200	lt R Br Ss + sty s	2.3	25	12	6.5							
PS1/TP 3A	2800 - 3400	lt Br Ms + sty s	2.3	24	11	5.5	2154	7.7	75	30	12	0.70	G6
PS1/TP 4A	1800 - 2200	lt Br Ss + sty s	2.3	22	10	5.0							
PS1/TP 5A	1100 - 1400	lt Br Ss + sty s	2.2	24	9	4.5							


The material varied between a G8 and G6 material classification indicating that material similar to the samples tested would be suitable for use as backfill or material required for platforms.

Foundation Indicator

Disturbed samples were tested to determine the risk associated with heave. The results indicated that there was a low potential risk for expansive material.

POSITION	DEPTH	DESCKIEJON DESCKIEJON		LINEAR SHRINKAGE	PI WHOLE SAMPLE	POTENTIAL EXPANSIVENESS
PS 1/TP 1	1600	dk R Br sdy st	18	4	8.0	LOW
PS1/TP 1A	1700 - 2100	lt Br Ss + sty s	5	5.5	3.0	LOW
PS1/TP 2A	400 - 1000	Pale R sdy st	6	3.5	6.0	LOW
PS1/TP 2A	1000 - 1200	lt R Br Ss + sty s	8	6.5	3.0	LOW
PS1/TP 3A	2800 - 3400	lt Br Ms + sty s	5	5.5	2.0	LOW
PS1/TP 4A	1800 - 2200	lt Br Ss + sty s		5.0	3.0	LOW
PS1/TP 5A	1100 - 1400	lt Br Ss + sty s	6	4.5	3.0	LOW

The expansiveness of the horizons tested was evaluated using Van der Merwe's method of classification. The PI of the whole sample varied between 2 and 8 with the clay fraction (0.002mm sieve) varied between 5% and 18%.

CLAY FRACTION OF WHOLE SAMPLE (< 2 um)

Tri-axial and Consolidation Tests

One (1) undisturbed sample was taken of the sandy silt horizons to determine the apparent cohesion, internal angle of friction and risk of consolidation.

The tri-axial test indicated that the apparent cohesion 60kPa with the corresponding internal angle of friction 24°.

The consolidation tests indicated a high risk with regards to collapse / settlement and care must be taken in the platform and foundation design for the pump station.

POSITION	PS1(ALT)-TH1
DEPTH	1.6m
SAMPLE DESCRIPTION	dk R Br sdy st
COLLAPSE	9.79%

Pinhole Test

Three (3) samples were tested according the ASTM D4221-90 test method to determine the dispersive grade classification of the soils. The results indicated the grade of dispersiveness varied between D1 and D2.

Crumb Test

Three samples were tested in the crumb tests and the results indicated a low risk of dispersiveness.

Dynamic Cone Penetrometer Tests

The DCP tests indicated that the estimated safe bearing pressure at depth in excess of 500mm was in excess of 130kPa. The Use and Interpretation of the Dynamic Cone Penetrometer (Dcp) Test by P Paige-Green and L Du Plessis was used to determine the estimated safe bearing pressure from the DCP penetration rate. Note that the DCP penetration rate will change with any changes to the moisture content or density of the material tested.

5.4 Reservoir Position

Soil Profiles

The material encountered at the position for the reservoir generally consisted of transported silty or clayey sand. The moisture conditions were moist, the consistency soft becoming firm and the structures varied between intact and slickensided.

Residual material was encountered at all trial pit positions and varied between sandstone, mudstone and shale. The moisture conditions were moist, the consistency hard and the structure shattered.

No water seepage was recorded in any of the trial pit positions.

Excavation

Excavations were done by machine and the excavation depths were as follows:

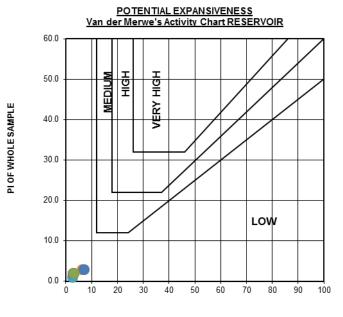
\succ	Reservoir	Trial Hole 1	No refusal @ 3000mm
\triangleright	Reservoir	Trial Hole 2	No refusal @ 3000mm
\triangleright	Reservoir	Trial Hole 3	No refusal @ 3100mm
\triangleright	Reservoir	Trial Hole 4	Refusal @ 2500mm on sandstone
\triangleright	Reservoir	Trial Hole 5	Refusal @ 2400mm on sandstone
\triangleright	Reservoir	Trial Hole 6	Refusal @ 2400mm on sandstone

Test Results

Road Indicator

Seven (7) disturbed samples were taken to determine the suitability of the material to be used during construction.

POSITION	DEPTH	DESCRIPTION	G. M.	L L (%)	P I (%)	r s (%)	MDD (kg/m3)	OMC (%)	C.B.R. @ 100%	C.B.R. @ 95 %	C.B.R. @ 90 %	SWELL (%)	TRH14 CLASS
RES - TP 1	300 - 1600	dk R Br Sh + sty s	2.55	28	9	4.5	2020	11.8	61	41	19	0.40	G6
RES - TP 1	2500 - 3000	Pale R Sh + sty s	2.4	30	8	4.5							
RES - TP 2	560- 3000	Pale R Sh + sty s	2.4	33	9	4.5	1905	12.9	55	42	33	0.30	G6
RES - TP 3	180 - 3100	Pale R Sh + cly s	2.7	35	11	5.5	2031	12.1	75	43	21	0.60	G6
RES - TP 4	800 - 2500	Pale R Sh + cly s	2.6	33	14	6.5	1997	13.8	62	41	27	0.70	G6
RES - TP 5	1100 - 2400	Pale R Ss + cly s	2.2	42	10	5.0							
RES - TP 6	1050 - 2400	Pale R Sh + cly s	2.3	31	15	7.0	1980	11.4	74	31	13	0.40	G6


The material conformed to G6 material classification indicating that material similar to the samples tested would be suitable for use as backfill or material required for platforms.

Foundation Indicator

Disturbed samples were tested to determine the risk associated with heave. The results indicated that there was a low potential risk for expansive material.

POSITION	DEPTH	DESCRIPTION	0.002 mm	LINEAR SHRINKAGE	PI WHOLE SAMPLE	POTENTIAL EXPANSIVENESS
RES - TP 1	2500 - 3000	Pale R Sh + sty s	3	4.5	2.0	LOW
RES - TP 2	560- 3000	Pale R Sh + sty s	3	4.5	2.0	LOW
RES - TP 3	180 - 3100	Pale R Sh + cly s	3	5.5	1.0	LOW
RES - TP 4	800 - 2500	Pale R Sh + cly s	3	6.5	2.0	LOW
RES - TP 5	1100 - 2400	Pale R Ss + cly s	7	5.0	3.0	LOW
RES - TP 6	1050 - 2400	Pale R Sh + cly s	6	7.0	3.0	LOW

The expansiveness of the horizons tested was evaluated using Van der Merwe's method of classification. The PI of the whole sample varied between 1 and 3 with the clay fraction (0.002mm sieve) varied between 3% and 7%.

CLAY FRACTION OF WHOLE SAMPLE (< 2 um)

Tri-axial and Consolidation Tests

One (1) undisturbed sample was taken of the clayey horizons to determine the apparent cohesion, internal angle of friction and risk of consolidation.

The tri-axial test indicated that the apparent cohesion 40kPa with the corresponding internal angle of friction 16°.

The consolidation tests indicated a high risk with regards to free swell.

POSITION	RES-TH5			
DEPTH	300-1100mm			
SAMPLE DESCRIPTION	dk G cl			
SWELL	4.05%			

Dynamic Cone Penetrometer Tests

The DCP tests indicated that the estimated safe bearing pressure at depth in excess of 500mm was in excess of 130kPa. DCP penetration refusals were recorded in the residual horizons at all six test position. The Use and Interpretation of the Dynamic Cone Penetrometer (Dcp) Test by P Paige-Green and L Du Plessis was used to determine the estimated safe bearing pressure from the DCP penetration rate. Note that the DCP penetration rate will change with any changes to the moisture content or density of the material tested.

5.5 Alternative Reservoir Position

Soil Profiles

The material encountered at the position for the alternative reservoir generally consisted of transported sandy silt. The moisture conditions were moist, the consistency soft and the structures were intact. At one trial pit (Res-TP8A) a second transported horizon consisting of clayey silt with ferricrete nodules were profiled.

Residual material was encountered at all trial pit positions consisted of sandstone. The moisture conditions were slightly moist, the consistency hard and the structure shattered.

No water seepage was recorded in any of the trial pit positions. However the horizon of ferricrete nodules within the clayey silt was an indication of fluctuating water tables.

Excavation

Excavations were done by machine and the excavation depths were as follows:

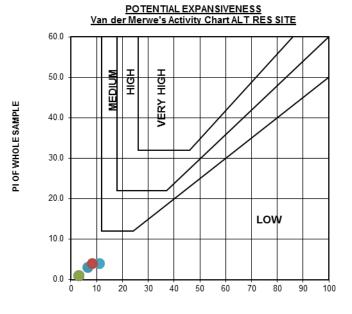
\triangleright	Reservoir	Trial Hole 6A	Refusal @ 1250mm on sandstone
\triangleright	Reservoir	Trial Hole 7A	Refusal @ 900mm on sandstone
\triangleright	Reservoir	Trial Hole 8A	Refusal @ 880mm on sandstone
\triangleright	Reservoir	Trial Hole 9A	Refusal @ 1500mm on sandstone

Test Results

Road Indicator

Four (4) disturbed samples were taken to determine the suitability of the material to be used during construction.

POSITION	DEPTH	DESCRIPTION	G. M.	L L (%)	P I (%)	L S (%)	MDD (kg/m3)	OMC (%)	C.B.R. @ 100%	C.B.R. @ 95 %	C.B.R. @ 90 %	SWELL (%)	TRH14 CLASS
RES/TP 6A	900 - 1250	lt Br Ss + sty s	2.4	18	5	2.5							
RES/TP 7A	700 - 900	It Br Ss + cly s	2.3	30	14	6.5							
RES/TP 8A	700 - 880	It Br Ss + cly s	2.3	30	14	6.0	2138	7.2	62	30	13	0.50	G6
RES/TP 9A	500 - 1500	lt Br. Ss + sty s	2.2	24	11	5.0							


The material conformed to G6 material classification indicating that material similar to the samples tested would be suitable for use as backfill or material required for platforms.

Foundation Indicator

Disturbed samples were tested to determine the risk associated with heave. The results indicated that there was a low potential risk for expansive material.

POSITION	DEPTH	DESCRIPTION	0.002 mm	LINEAR SHRINKAGE	PI WHOLE SAMPLE	POTENTIAL EXPANSIVENESS
RES/TP 6A	900 – 1250	lt Br Ss + sty s	3	2.5	1.0	LOW
RES/TP 7A	700 – 900	lt Br Ss + sty s	8	6.5	4.0	LOW
RES/TP 8A	700 – 880	lt Br Ss + sty s	11	6.0	4.0	LOW
RES/TP 9A	500 - 1500	lt Br Ss + sty s	7	5.0	3.0	LOW

The expansiveness of the horizons tested was evaluated using Van der Merwe's method of classification. The PI of the whole sample varied between 1 and 4 with the clay fraction (0.002mm sieve) varied between 3% and 11%.

CLAY FRACTION OF WHOLE SAMPLE (< 2 um)

Dynamic Cone Penetrometer Tests

The DCP tests indicated that the estimated safe bearing pressure at depth in excess of 500mm was in excess of 200kPa. DCP penetration refusals were recorded in the residual horizons at all test position. The Use and Interpretation of the Dynamic Cone Penetrometer (Dcp) Test by P Paige-Green and L Du Plessis was used to determine the estimated safe bearing pressure from the DCP penetration rate. Note that the DCP penetration rate will change with any changes to the moisture content or density of the material tested.

5.6 Main Pipeline

Soil Profiles

The material along the pipeline route varied. The transported material was generally sandy or silty material. The residual material varied between sandstone, mudstone and shale. At section the excavations indicated that plated sandstone was encountered close to the surface.

Excavation

The excavations were done by means of TLB and the various excavation depths are given below. Based on the excavation depths it can be noted that the sections between trial holes 2 and 29 had shallow excavation depths (less than 1100mm) with the remainder of the pipeline varying between 400mm and 3000mm.

\triangleright	Main Pipeline	Trial Hole 01	No refusal 3100mm
\triangleright	Main Pipeline	Trial Hole 02	Refusal @ 800mm on sandstone
\triangleright	Main Pipeline	Trial Hole 03	Refusal @ 2000mm on mudstone
\triangleright	Main Pipeline	Trial Hole 04	Refusal @ 830mm on sandstone
\triangleright	Main Pipeline	Trial Hole 05	Refusal @ 1000mm on sandstone
\triangleright	Main Pipeline	Trial Hole 06	Refusal @ 280mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 07	Refusal @ 600mm on sandstone
\succ	Main Pipeline	Trial Hole 08	Refusal @ 700mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 09	Refusal @ 210mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 10	Refusal @ 1300mm on sandstone
\succ	Main Pipeline	Trial Hole 11	Refusal @ 400mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 12	Refusal @ 1100mm on decomposed
\triangleright	Main Pipeline	Trial Hole 13	Refusal @ 300mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 14	No refusal @ 3000mm
	Main Pipeline	Trial Hole 15	Refusal @ 650mm on sandstone
\triangleright	Main Pipeline	Trial Hole 16	Refusal @ 570mm on sandstone
\triangleright	Main Pipeline	Trial Hole 17	Refusal @ 500mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 18	Refusal @ 450mm on sandstone plate
	Main Pipeline	Trial Hole 19	Refusal @ 800mm on sandstone plate
AAAAA	Main Pipeline	Trial Hole 20	Refusal @ 440mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 21	Refusal @ 1340mm on sandstone
\triangleright	Main Pipeline	Trial Hole 22	Refusal @ 920mm on sandstone
\triangleright	Main Pipeline	Trial Hole 23	Refusal @ 580mm on sandstone
\triangleright	Main Pipeline	Trial Hole 24	Refusal @ 520mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 25	Refusal @ 670mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 26	Refusal @ 1100mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 27	Refusal @ 800mm on mudstone
\triangleright	Main Pipeline	Trial Hole 28	Refusal @ 1100mm on sandstone
\triangleright	Main Pipeline	Trial Hole 29	Refusal @ 1100mm on dec dolerite
\triangleright	Main Pipeline	Trial Hole 30	Refusal @ 2000mm on sandstone
A A A A A A	Main Pipeline	Trial Hole 31	No refusal @ 3000mm
\triangleright	Main Pipeline	Trial Hole 32	Refusal @ 620mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 33	No refusal @ 3000mm
\triangleright	Main Pipeline	Trial Hole 34	Refusal @ 1240mm on sandstone
	Main Pipeline	Trial Hole 35	No refusal @ 3000mm
\triangleright	Main Pipeline	Trial Hole 36	Refusal @ 1900mm on sandstone
\triangleright	Main Pipeline	Trial Hole 37	Refusal @ 400mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 37	No refusal @ 3000mm
\triangleright	Main Pipeline	Trial Hole 38	No refusal @ 3000mm

\triangleright	Main Pipeline	Trial Hole 40	Refusal @ 2500mm on sandstone
\triangleright	Main Pipeline	Trial Hole 41	Refusal @ 2300mm on dec dolerite
\triangleright	Main Pipeline	Trial Hole 42	Refusal @ 1300mm on sandstone
\triangleright	Main Pipeline	Trial Hole 43	Refusal @ 1200mm on sandstone
\triangleright	Main Pipeline	Trial Hole 44	Refusal @ 2300mm on sandstone
\triangleright	Main Pipeline	Trial Hole 45	Refusal @ 410mm on sandstone plate
\triangleright	Main Pipeline	Trial Hole 46	No refusal @ 2800mm

Depending on the required excavation depth for the pipeline allowance should be made for intermediate to hard excavations.

Test Results

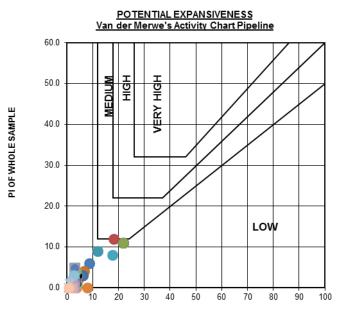
Compactability Indicator

Disturbed samples were taken from the various trial pits. The material was tested to determine the suitability to be used during construction as backfill or bedding.

POSITION	DEPTH	DESCRIPTION	G. M.	L L (%)	P I (%)	L S (%)	COMPACTIBILITY
TP 01	0 - 600	dk Y O sty s	0.71	CBD	NP	0.0	0.18
TP 02	0 - 550	dk R sty s	0.83	20	6	2.5	0.16
TP 04	0 - 300	lt Br sty s	1.02	CBD	NP	0.0	0.18
TP 05	0 - 400	dk R sty s	0.77	CBD	NP	0.0	0.14
TP 07	0 - 200	It Br sty s	0.85	CBD	NP	0.0	0.14
TP 08	0 - 500	lt Br sty s	0.75	CBD	NP	0.0	0.14
TP 09	0 - 200	lt Br sty s	0.81	CBD	NP	0.0	0.14
TP 10	0 - 460	dk R O sty s	0.71	CBD	NP	0.0	0.18
TP 14	0 - 1150	dk R O sty s	0.65	CBD	NP	0.0	0.18
TP 15	0 - 230	dk R Br sty s	0.78	CBD	NP	0.0	0.21
TP 17	0 - 500	dk R O sty s	0.73	CBD	SP	1.0	0.18
TP 18	0 - 450	dk R O sty s	0.60	CBD	NP	0.0	0.22
TP 21	0 - 400	dk R O sty s	0.86	CBD	SP	1.0	0.21
TP 22	0- 600	dk G sty s	0.63	CBD	SP	0.5	0.20
TP 25	270 - 430	dk Br sty s	0.99	CBD	SP	1.5	0.22
TP 28	140 - 600	dk R O sty st	0.62	CBD	SP	0.5	0.2
TP 29	220 - 500	dk R Br sty s	0.68	CBD	SP	1.5	0.19
TP 30	0 - 600	dk G sty s	0.70	CBD	NP	0.0	0.22
TP 30	600 - 1400	It Br sty s	0.71	CBD	NP	0.0	0.16
TP 31	250 - 1900	lt Br sdy cl	0.44	39	21	10.5	0.22
TP 32	0 - 620	It Br sty s	0.79	CBD	NP	0.0	0.22
TP 33	100 - 500	dk G sty s	0.59	CBD	NP	0.0	0.16
TP 33	500 - 1200	It Br sty s	0.57	CBD	NP	0.0	0.20
TP 34	0 - 900	It Br sty s	0.71	CBD	NP	0.0	0.14
TP 35	350 - 1200	lt Br sty s	0.58	CBD	NP	0.0	0.18

TP 37	0 - 200	It Br sty s	0.62	CBD	NP	0.0	0.20
TP 38	0 - 400	It R sty s	0.42	CBD	NP	0.0	0.22
TP 39	0 - 650	It R sdy st	0.30	24	10	5.0	0.20
TP 40	0 - 800	dk G sdy st	0.52	CBD	SP	1.5	0.22
TP 42	0 - 300	dk R Br sdy st	0.64	CBD	SP	1.5	0.22
TP 43	0 - 750	dk Br sdy st	0.64	CBD	SP	1.0	0.25
TP 44	0 - 650	dk Br sty s	0.61	CBD	SP	1.0	0.21
TP 45	0 - 390	dk Br sdy st	0.52	20	6	2.5	0.21
TP 46	0 - 700	dk Br sdy st	0.46	27	8	4.0	0.18

When analyzing the results in accordance to SABS1200 LB: Pipe (Bedding) the following notes can be made:


- The SABS specify that the compactibility factor maximum is 0.4 all material conformed to the requirement.
- The SABS specify that bedding shall be non-cohesive material that falls within the 0.6mm to 19.0mm grading envelope most material conformed to the requirement.
- The SABS specify that fill material must have a PI less than 10 and that all particle sizes be smaller than 30mm most material conformed to the requirement.

Foundation Indicator

Foundation indicator tests were done to determine the risk of heave. The results indicated that there was generally a low risk with regards to heave with the only areas with some clayey material at TP31 and TP35.

NOITION	DEPTH	DESCRIPTION	0.002 mm	LINEAR SHRINKAGE	PI WHOLE SAMPLE	POTENTIAL EXPANSIVENESS			
PIPELINE									
TP 01	1600 - 3100	dk O sty s	8	1.5	0.0	LOW			
TP 02	550 - 800	Pale R Ss + cly s	3	5.5	2.0	LOW			
TP 03	0 - 2000	dk R high weath Ms + cly s	7	8.5	4.0	LOW			
TP 04	400 - 1000	dk R O Ss + sty s	1	3.0	1.0	LOW			
TP 07	400 - 600	lt Br Ss + sty s	4	2.5	1.0	LOW			
TP 10	1000 - 1300	lt R Br Ss + cly s	3	5.5	5.0	LOW			
TP 11	200 - 400	dk R high weath Ss + cly s	4	6.0	2.0	LOW			
TP 12	200 - 1100	dk R Br dec Dol + cly s	4	12.0	3.0	LOW			
TP 13	120 - 300	lt Br Ss + sty s	1	1.5	0.0	LOW			
TP 14	2300 - 3000	It R Br high weath Ss + sty s	12	5.0	9.0	LOW			
TP 15	230 - 680	dk R O Ss	1	1.0	0.0	LOW			
TP 16	250 - 570	dk R O Ss	1	1.0	0.0	LOW			
TP 19	430 - 800	dk Br Ss	2	1.5	0.0	LOW			

POSITION	DEPTH	DESCRIPTION	0.002 mm	LINEAR SHRINKAGE	PI WHOLE SAMPLE	POTENTIAL EXPANSIVENESS
TP 20	120 - 440	Pale R Ss	1	1.5	0.0	LOW
TP 21	400 - 1340	dk R O Ss	1	1.0	0.0	LOW
TP 22	600 - 920	lt R Br Ss	2	4.5	2.0	LOW
TP 23	130 - 550	dk R Br Ss	1	4.0	1.0	LOW
TP 24	300 - 520	It OI Ss	1	1.0	0.0	LOW
TP 25	430 - 670	Pale R Sh + cly s	3	6.0	3.0	LOW
TP 26	120 - 1100	lt R Br Ss	1	1.0	0.0	LOW
TP 27	600 - 800	Pale R Ms	1	6.0	1.0	LOW
TP 28	140 - 660	lt R O Ss	1	1.5	0.0	LOW
TP 29	500 - 1100	It R O dec Dol + sty cl	1	7.5	1.0	LOW
TP 30	1840 - 2000	lt R Br Ss	3	4.0	3.0	LOW
TP 31	1900 - 3000	dk Y O high weath Ss + cly s	18	5.5	12.0	MED
TP 33	2000 - 3000	Pale R Ss + sdy st	9	4.5	6.0	LOW
TP 34	900 - 1240	It R Br Ss + sand	2	1.0	0.0	LOW
TP 35	1900 - 3000	It R Br cly s	22	6.5	11.0	LOW
TP 36	1400 - 1900	lt Br Ss + sty s	3	1.0	0.0	LOW
TP 37	200 - 400	lt R Br Ss	1	1.0	0.0	LOW
TP 38	400 - 3000	lt R O Ss + sty s	18	4.5	8.0	LOW
TP 39	650 - 3000	It R O dec Dol + sty s	1	1.5	0.0	LOW
TP 41	250 - 2300	dk R Br dec Dol + cly s	1	7.5	1.0	LOW
TP 42	300 - 1300	dk R O Ss + cly s	6	7.5	3.0	LOW
TP 43	750 - 1200	lt Br Ss + sty s	3	1.5	1.0	LOW
TP 44	650 - 2300	dk Y Ss + sty s	4	4.5	4.0	LOW
TP 45	390 - 410	lt Br Ss + sty s	4	1.0	0.0	LOW
TP 46	700 - 2800	Pale R Ss + cly s	3	5.5	2.0	LOW

CLAY FRACTION OF WHOLE SAMPLE (< 2 um)

Dynamic Cone Penetrometer Tests

Dynamic Cone Penetrometer tests were performed adjacent to the trial pit positions. At most test positions the DCP recorded refusal on or within the residual material.

Soil Resistivity Tests

At various positions along the pipeline route soil resistivity and corrosiveness tests were performed to assist in deciding the material to be considered for the pipeline.

Along the route the values varied with the section between the start and approximately test position 42 ranging between moderate and mildly corrosive. The section between test position 42 until the end had more values in the moderate to severe range.

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010					
SOIL RESISTIVITY (Ω/m) CORROSIVENESS					
0 - 10	VERY SEVERE				
10 - 100	MODERATE TO SEVERE				
100 - 1000	MILD (IF AERATED)				
> 1000	PROBABLY NOT CORROSIVE				

TEST POSITION	DESCRIPTION	SOIL CONDITION:	WEATHER COND:	GPS CO-ORD:	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVIT Υ (Ω/m)
SR01	It Br sty s	SLIGHTLY MOIST	COOL, SUNNY	S 32°02'07.7" E 27°49'36.7"	3.29	62.02
SR02	It Br sty s	DRY	HOT	S 32°02'11.5" E 27°49'44.7"	7.62	143.60
SR03	It Br sty s	DRY	HOT	S 32°02'18.5" E 27°49'49.6"	7.86	148.16
SR05	It Br sty s	DRY	VERY HOT	S 32°02'29.2" E 27°50'00.9"	4.80	90.48
SR06	It Br sty s	DRY	VERY HOT	S 32°02'34.8" E 27°50'07.5"	15.96	300.84
SR07	It Br sty s	SLIGHTLY MOIST	COLD	S 32°02'40.3" E 27°50'14.8"	13.80	260.12
SR09	It Br sty s	SLIGHTLY MOIST	COLD	S 32°02'39.4" E 27°50'33.0"	13.00	245.04
SR10	It Br sty s	SLIGHTLY MOIST	COLD	S 32°02'38.7" E 27°50'42.4"	4.20	79.17
SR11	It Br sty s	SLIGHTLY MOIST	COOL	S 32°02'38.1" E 27°50'52.0"	17.60	331.75
SR12	It Br sty s	SLIGHTLY MOIST	COOL	S 32°02'36.0" E 27°50'59.4"	7.60	143.26
SR13	It Br sty s	DRY	WARM	S 32°02'35.8" E 27°51'08.9"	11.60	218.65
SR14	It Br sty s	DRY	HOT	S 32°02'36.0" E 27°51'18.2"	11.40	214.88
SR18	It Br sty s	DRY	HOT	S 32°02'55.3" E 27°51'32.9"	12.40	233.73
SR19	It Br sty s	DRY	VERY HOT	S 32°03'00.2" E 27°51'37.5"	19.20	361.91
SR20	It Br sty s	DRY	VERY HOT	S 32°03'04.8" E 27°51'45.1"	8.20	154.57
SR21	It Y Br sty s	DRY	VERY HOT	S 32°03'09.5" E 27°51'53.0"	4.57	86.07
SR22	It Br sty s	MOIST	COLD	S 32°03'15.2" E 27°51'59.4"	12.60	237.50
SR23	It Br sty s	MOIST	COLD	S 32°03'18.6" E 27°52'07.0"	4.40	82.94
SR24	It Br sty s	MOIST	COOL	S 32°03'19.1" E 27°52'16.4"	16.00	301.59
SR25	It Y Br sty s	MOIST	COOL	S 32°03'21.1" E 27°52'25.7"	9.60	180.96
SR26	It Br sty s	MOIST	COOL	S 32°03'22.6" E 27°52'35.1"	3.80	71.63
SR28	It Br sty s	MOIST	COOL	S 32°03'25.8" E 27°52'54.0"	3.86	72.83
SR29	It Br sty s	MOIST	COOL	S 32°03'27.6" E 27°53'03.3"	3.80	71.63
SR30	It Br sty s	MOIST	COOL	S 32°03'30.3" E 27°53'12.7"	10.60	199.81
SR31	It Br sty s	MOIST	COLD	S 32°03'32.7" E 27°53'21.5"	7.39	139.37
SR32	It Br sty s	SLIGHTLY MOIST	COLD	S 32°03'35.4" E 27°53'31.0"	3.80	71.63
SR35	It Br sty s + dec Dol	SLIGHTLY MOIST	COLD	S 32°03'44.2" E 27°53'56.6"	11.25	212.00
SR36	It Br sty s + dec Dol	SLIGHTLY MOIST	COLD	S 32°03'47.2" E 27°54'05.4"	8.57	161.50
SR37	It Br dec Dol	SLIGHTLY MOIST	VERY COLD	S 32°03'50.3" E 27°54'14.3"	6.91	130.30
SR38	It Br dec Dol	SLIGHTLY MOIST	VERY COLD	S 32°03'53.9" E 27°54'22.7"	13.69	258.10
SR39	It Br dec Dol	SLIGHTLY MOIST	VERY COLD	S 32°04'00.6" E 27°54'28.4"	14.32	269.90
SR40	It Br sty s	SLIGHTLY MOIST	VERY COLD	S 32°04'07.0" E 27°54'33.9"	10.02	188.90
SR42	It Br dec Dol	SLIGHTLY MOIST	VERY COLD	S 32°04'20.7" E 27°54'45.9"	11.12	209.50
SR43	It Y Br dec Dol	SLIGHTLY MOIST	COLD	S 32°04'27.0" E 27°54'51.3"	0.68	12.90
SR44	It Br sty s	SLIGHTLY MOIST	COLD	S 32°04'33.5" E 27°54'56.8"	6.61	124.60
SR45	It Br sty s	SLIGHTLY MOIST	VERY COLD	S32° 04' 39.9" E27° 55' 02.7"	5.33	100.43
SR46	It Br sty s	SLIGHTLY MOIST	VERY COLD	S32° 04' 46.2" E27° 55' 08.5"	1.00	18.89
SR47	It Br dec Dol	SLIGHTLY MOIST	VERY COLD	S32° 04' 52.9" E27° 55' 12.9"	10.27	193.62
SR48	It Br dec Dol	SLIGHTLY MOIST	VERY COLD	S32° 05' 00.5" E27° 55' 16.4"	1.84	34.65
SR49	It Br sty s	SLIGHTLY MOIST	VERY COLD	S32° 05' 08.0" E27° 55' 19.8"	0.73	13.76
SR50	It Br sty s	SLIGHTLY MOIST	VERY COLD	S32° 05' 15.4" E27° 55' 23.2"	6.71	126.44
SR52	It Br sty s	SLIGHTLY MOIST	COLD	S32° 05' 29.3" E27° 55' 30.7"	4.76	89.72
SR53	It Br sty s	SLIGHTLY MOIST	VERY COLD	S32° 05' 36.9" E27° 55' 35.2"	2.30	43.39
SR54	It Br sty s	SLIGHTLY MOIST	VERY COLD	S32° 05' 36.1" E27° 55' 44.3"	2.52	47.46
SR55	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 34.7" E27° 55' 54.0"	3.83	72.12
SR57	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 26.9" E27° 56' 09.6"	2.30	43.35
SR58	lt Br sty s + Ms	SLIGHTLY MOIST		S32° 05' 22.3" E27° 56' 17.7"	32.20	606.96
SR59	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 22.0" E27° 56' 27.0"	8.00	150.80
SR60	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 21.9" E27° 56' 36.9"	6.40	120.64
SR61	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 17.5" E27° 56' 43.1"	3.02	56.93
SR62	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 10.7" E27° 56' 47.8"	6.80	128.18
SR63	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 03.6" E27° 56' 52.4"	10.80	203.58
SR64	It Br sty s		VERY COLD/WINDY		8.40	158.34
SR65	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 37.2" E27° 56' 03.4"	4.63	87.31
SR66	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 44.8" E27° 56' 03.6"	2.87	54.06
SR67	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY		3.85	72.57
SR68	It Br sty s	SLIGHTLY MOIST	VERY COLD/WINDY	S32° 05' 32.2" E27° 56' 12.9"	4.11	77.43

5.7 Alternative Pipeline

Soil Profiles

The material along the pipeline route varied. The transported material was generally silty sand and the residual material sandstone.

Excavation

Excavations were all machine (TLB) excavated and refusals were all less than 1400mm.

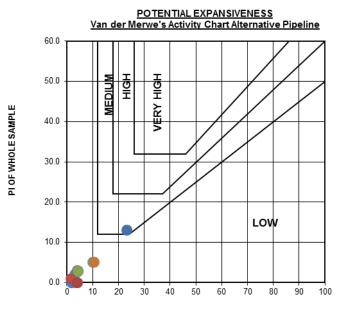
\triangleright	AR	Trial Hole 01	Refusal @ 750mm on sandstone
\triangleright	AR	Trial Hole 02	Refusal @ 1800mm on mudstone
\triangleright	AR	Trial Hole 03	Refusal @ 750mm on sandstone
\triangleright	AR	Trial Hole 04	Refusal @ 1000mm on sandstone
\triangleright	AR	Trial Hole 05	Refusal @ 1100mm on sandstone
\triangleright	AR	Trial Hole 06	Refusal @ 1300mm on sandstone
\triangleright	AR	Trial Hole 07	Refusal @ 500mm on sandstone
\triangleright	AR	Trial Hole 08	No trial pit, position within cemetery
\triangleright	AR	Trial Hole 09	Refusal @ 1200mm on sandstone plate
\triangleright	AR	Trial Hole 10	Refusal @ 740mm on sandstone plate
\triangleright	AR	Trial Hole 11	Refusal @ 1400mm on sandstone
\succ	AR	Trial Hole 12	No refusal @ 3000mm
\triangleright	AR	Trial Hole 13	Refusal @ 1160mm on sandstone plate

Test Results

Compactability Indicator

Disturbed samples were taken from the various trial pits. The material was tested to determine the suitability to be used during construction as backfill or bedding.

POSITION	DEPTH	DESCRIPTION	G. M.	L L (%)	P I (%)	L S (%)	COMPACTIBILITY
AR TP 1	0 - 500	dk R Br sdy st	0.72	CBD	SP	1.0	0.24
AR TP 10	0 - 500	dk R Br sdy st	0.71	CBD	SP	1.0	0.18
AR TP 11	0 - 320	dk Br sty s	0.71	CBD	SP	1.0	0.14
AR TP 11	320 - 1270	dk Br sdy st	0.62	20	7	3.5	0.16
AR TP 12	0 - 500	dk R Br sdy st	0.79	CBD	NP	0.0	0.16
AR TP 12	500 - 800	dk Br cly s	0.44	33	13	7.0	0.18
AR TP 13	0 - 480	dk R sdy st	0.78	CBD	NP	0.0	0.16
AR TP 2	0 - 200	dk R Br sty s	0.77	CBD	SP	1.0	0.21
AR TP 4	0 - 260	dk R Br sty s	0.78	CBD	NP	0.0	0.14
AR TP 6	0 - 250	dk R Br sdy st	0.80	CBD	NP	0.0	0.16
AR TP 9	0 - 300	dk R Br sdy st	0.82	CBD	NP	0.0	0.14


When analyzing the results in accordance to SABS1200 LB: Pipe (Bedding) the following notes can be made:

- The SABS specify that the compactibility factor maximum is 0.4 all material conformed to the requirement.
- The SABS specify that bedding shall be non-cohesive material that falls within the 0.6mm to 19.0mm grading envelope – most material conformed to the requirement.
- The SABS specify that fill material must have a PI less than 10 and that all particle sizes be smaller than 30mm most material conformed to the requirement.

Foundation Indicator

Foundation indicator tests were done to determine the risk of heave. The results indicated that there was generally a low risk with regards to heave with the only exception the material at AR-TP12 that indicated a medium risk and high clay content.

POSITION	DEPTH	DESCRIPTION	0.002 mm	LINEAR SHRINKAGE	PI WHOLE SAMPLE	POTENTIAL EXPANSIVENESS
AR TP 02	300 - 1800	Pale R Ms + cly s	4	5.5	3.0	LOW
AR TP 03	180 - 750	dk Y O Ss + sty s	2	2.5	1.0	LOW
AR TP 04	500 - 1000	dk Y O Ss + sdy st	10	4.5	5.0	LOW
AR TP 05	700 - 1100	lt R Br Ss + sty s	3	3.5	2.0	LOW
AR TP 06	1000 - 1300	lt R Br Ss + sty s	2	0.0	0.0	LOW
AR TP 10	700 - 740	lt Br Ss	3	1.5	0.0	LOW
AR TP 11	1270 - 1400	dk Br Sh/Ss + cly s	11	6.5	5.0	LOW
AR TP 12	1400 - 3000	dk Br cly s	23	6.5	13.0	MED
AR TP 13	930 - 1160	lt Br Ss + sty s	4	1.0	0.0	LOW

CLAY FRACTION OF WHOLE SAMPLE (< 2 um)

Dynamic Cone Penetrometer Tests

Dynamic Cone Penetrometer tests were performed adjacent to the trial pit positions. At all test positions the DCP recorded refusal on or within the residual material.

Soil Resistivity

At various positions along the pipeline route soil resistivity and corrosiveness tests were performed to assist in deciding the material to be considered for the pipeline.

At two test positions the material was severely corrosive (AR-SR15 and AR-SR16).

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m) CORROSIVENESS				
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000 MILD (IF AERATED)				
> 1000	PROBABLY NOT CORROSIVE			

TEST POSITION	DESCRIPTION	SOIL CONDITION:	WEATHER COND:	GPS CO-ORD:	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVIT Y (Ω/m)
AR-SR01	It Br sty s	VERY MOIST	COLD	S 32°02'40.1" E 27°50'03.1"	10.80	203.58
AR-SR06	lt Y Br sty s	VERY MOIST	COLD	S 32°02'54.0" E 27°50'33.5"	6.69	126.03
AR-SR07	lt Y Br sty s	VERY MOIST	COLD	S 32°02'49.9" E 27°50'41.3"	14.40	271.43
AR-SR08	lt Y Br sty s	VERY MOIST	COOL	S 32°02'38.5" E 27°50'50.8"	10.00	188.50
AR-SR09	lt Brstys	VERY MOIST	COOL	S 32°02'47.2" E27°51'00.2"	11.68	220.16
AR-SR10	lt Brstys	VERY MOIST	WARM	S 32°02'48.2" E 27°51'08.2"	6.01	113.32
AR-SR12	lt Brstys	MOIST	WARM	S 32°02'56.6" E 27°51'19.2"	6.24	117.58
AR-SR13	It Br sty s	MOIST	WARM	S 32°03'04.4" E 27°51'20.1"	13.60	256.35
AR-SR14	It Br sty s	MOIST	COLD	S 32°03'08.6" E 27°51'25.5"	8.00	150.80
AR-SR15	It Br sty s	SLIGHTLY MOIST	COLD	S 32°03'09.8" E 27°51'35.0"	1.91	36.10
AR-SR16	It Br sty s	SLIGHTLY MOIST	COLD	S 32°03'13.2" E 27°51'43.6"	1.20	22.60
AR-SR17	It Br sty s	SLIGHTLY MOIST	COLD	S 32°03'17.1" E 27°51'52.1"	11.88	223.90
AR-SR18	It Br sty s	SLIGHTLY MOIST	COLD	S 32°03'18.6" E 27°52'01.4"	10.40	196.00

6. CONCLUSIONS AND RECOMMENDATIONS

Based on the geotechnical investigation it can be concluded that the following needs to be taken into consideration during the design of the pump stations, reservoirs and pipelines:

Pump station 1: the material profiled generally consisted of thick horizons of transported silty sand or sandy silt with soft excavations up to 3,9m, the G8 material will be usable during construction, the material had a low potential expansiveness and moderate to low risk of dispersiveness. The biggest concern at this position was the high risk of collapse and settlement of the sandy and silty material.

Pump station 2: the material generally consisted of transported silty sand with hard residual sandstone or mudstone, excavation refusals were recorded at all of the positions at depth less than 1,3m. The material at the position generally conformed to a G6 classification and had a low risk with regards to heave.

Alternative Pump station: the material profiled varied between transported sandy or clayey silt and residual sandstone or shale. The excavation depths varied between 1,2m and 3,4m. The material had a low risk with regards to heave and conformed to a G8 material classification. The biggest risk was the high risk of collapse and settlement of the sandy silt horizons.

Reservoir: the material profiled varied between transported silty sand and residual mudstone, sandstone or shale. The depths of excavations were all in excess of 2,4m. The material tested indicated a low risk with regards to heave and the material conformed to a G6 classification. The consolidation tests however indicated a 4% risk with regards to free swell that should be taken into consideration.

Alternative Reservoir: the material profiled at this position varied between transported sandy silt and residual sandstone. The excavation depths was less than 1,5m deep and the material had a low risk with regards to heave and conformed to a G6 material classification.

Main Pipeline: the material profiled along the pipeline route varied but generally consisted of transported sandy or silty material with residual sandstone. Due to the hard residual material within the top 1,5m of the profiles allowance should be made for intermediate and hard excavations. The soil resistivity tests indicated that section of the pipeline will be in

corrosive material. All the material conformed to the compactible requirement and most material conformed to the bedding and backfill specifications.

Alternative Pipeline: the material along the alternative route varied between transported sand or silt with residual mudstone or sandstone. Excavation depth were generally less than 1,8m deep. The material conformed to the compactible requirement and most material conformed to the bedding and backfill specifications. The soil resistivity test indicated that a short section of the pipeline will be in corrosive material.

All trial pit profiles and test results are attached to the report.

7. **REFERENCES**

Byrne G, Everett JP and Schwartz K. 1995. "A Guide to Practical Geotechnical Engineering in Southern Africa" Franki.

Jennings JE, Brink, ABA and Williams AB, "Revised Guide to Soil Profiling for Civil Engineering Purposes in Southern Africa" The Civil Engineer in South Africa, January 1973. ControLab South Africa (Pty) Ltd PROJECT:

1

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

REF:

Aurecon SA (Pty) Ltd **NGQAMAKHWE RWSS PHASE 5** ALTERNATIVE PUMP STATION SITE MT32019

1, 2, 3 TRIAL PIT No.'s : TLB **EXCAVATED BY:** DATE:

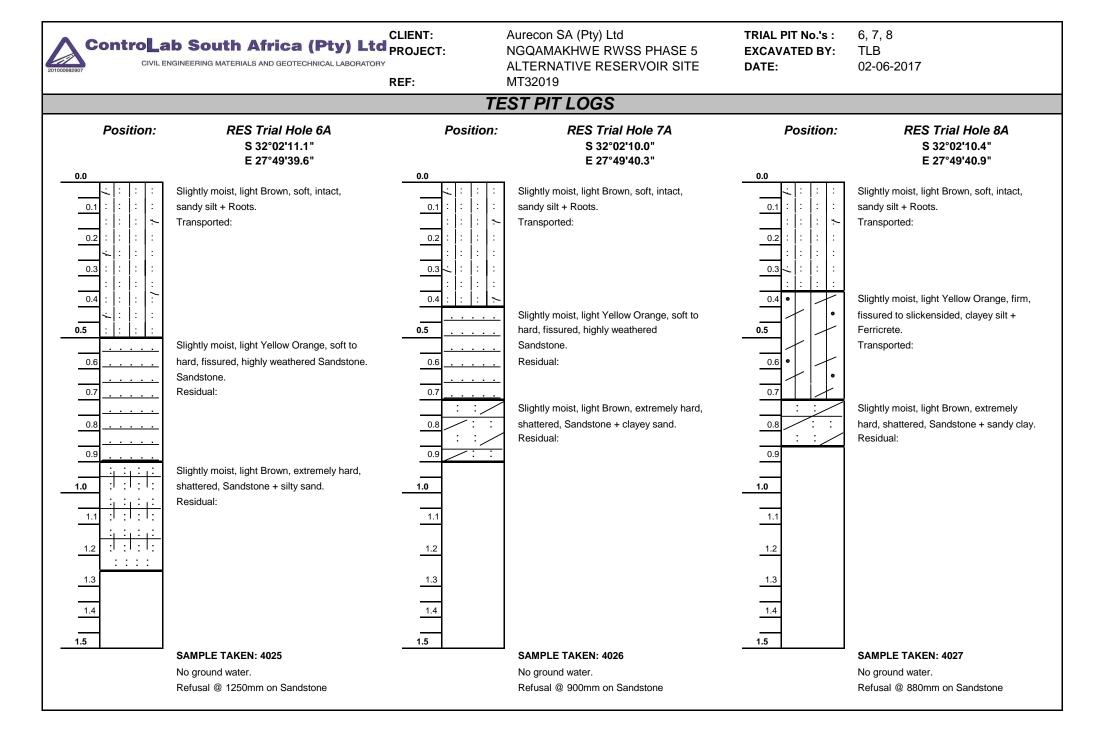
02-06-2017

TEST PIT LOGS Position: PS 1 Trial Hole 1A Position: PS 1 Trial Hole 2A Position: PS 1 Trial Hole 3A S 32°02'13.7" E 27°49'38.5" S 32°02'14.0" E 27°49'38.8" S 32°02'14.2" E 27°49'37.2" 0.0 0.0 0.0 : Slightly moist, light Brown, soft, intact, Slightly moist, light Brown, soft, intact, Slightly moist, light Brown, soft, intact, 0.1 0.1 0.1 0.2 0.2 : sandy silt. 0.2 sandy silt. sandy silt. 0.3 0.3 0.3 Transported: Transported: Transported: : 0.4 0.4 0.4 Slightly moist, light Red Brown, stiff, : . 0.5 0.5 : 0.5 Slightly moist, Pale Red, stiff, slickensided slickensided to fissured, clayey silt. to fissured, sandy silt. Transported: 0.6 0.6 0.6 0.7 0.7 0.7 Transported: 0.8 Slightly moist, light Red Brown, stiff, 0.8 0.8 0.9 0.9 0.9 slickensided to fissured, clayey silt. 1.0 1.0 1.0 Transported: 1.1 1.1 Slightly moist, light Red Brown, extremely 1.1 Sec. 11. 11. 1.2 1.2 1.2 : : : : : : : hard, shattered, Sandstone + silty sand. 1.3 1.3 1.3 Residual: 1.4 1.4 1.4 1.5 1.5 1.5 1.6 1.6 1.6 1.7 1.7 1.7 Slightly moist, light Yellow Brown, stiff, 1.8 1.8 1.8 Slightly moist, light Brown, extremely hard, slickensided to fissured, clayey sitl. 1.9 1.9 1.9 · | · shattered, Sandstone + silty sand. Transported: Residual: 2.0 2.0 2.0 2.1 . . . 2.1 2.1 2.2 2.3 2.4 **2.5** 2.2 2.3 2.4 **2.5** 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 **3.0** 2.6 2.7 2.8 2.9 2.6 2.7 2.8 Slightly moist, light Brown, very hard to 2.9 1111 3.0 3.0 1111 extremely hard, shattered, Shale + silty 3.6 3.7 3.8 3.6 3.7 1111 sand. 3.2 <u>. 1 : 1</u>; 3.4 Residual: 3.8 3.6 SAMPLE TAKEN: 4017 **SAMPLES TAKEN: 4018, 4019** SAMPLE TAKEN: 4021 3.9 No ground water 3.9 No ground water 3.8 No ground water 4.0 Refusal @ 2100mm on Sandstone 4.0 4.0 Refusal @ 3400mm on Shale Refusal @ 1200mm on Sandstone

ControLab South Africa (Pty) Ltd PROJECT:

2010006829

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


Aurecon SA (Pty) Ltd **NGQAMAKHWE RWSS PHASE 5** ALTERNATIVE PUMP STATION SITE MT32019

TRIAL PIT No.'s : 4, 5 **EXCAVATED BY:** DATE:

TLB 02-06-2017

REF:

TEST PIT LOGS Position: PS 1 Trial Hole 4A Position: PS 1 Trial Hole 5A S 32°02'15.0" E 27°49'37.5" S 32°02'11.8" E 27°49'38.4" 0.0 0.0 Slightly moist, light Brown, soft, intact, Slightly moist, light Brown, soft, intact, 0.1 : 0.1 0.2 0.2 sandy silt. : ÷ sandy silt + Roots. 0.3 Transported: 0.3 : Transported: 0.4 0.4 1 0.5 · 0.5 Slightly moist, light Red Brown, stiff, 0.6 0.6 slickensided to fissured, clayey silt. 0.7 0.7 Transported: 0.8 0.8 0.9 Slightly moist, light Red Brown, stiff, 0.9 1.0 slickensided to fissured, clayey silt. 1.0 1.1 Transported: 1.1 1.2 1.3 1.4 **1.5** 1.2 Slightly moist, light Brown, extremely hard, 111 1.3 :1:1: shattered, Sandstone + silty sand. 1.4 : : : Residual: 1.5 1.6 1.7 1.8 1.9 1.6 1.7 1.8 1.9 Slightly moist, light Brown, extremely hard, : : : : : : : :1:1: 2.0 · shattered, Sandstone + silty sand. 2.0 2.1 2.2 2.3 2.4 **2.5** 2.1 2.2 Residual: 1111 :1:1:1: 2.3 2.4 **2.5** 2.6 2.7 2.8 2.9 **3.0** 2.6 2.7 2.8 2.9 **3.0** 3.6 3.7 3.8 3.9 3.6 3.7 3.8 SAMPLE TAKEN: 4022 SAMPLE TAKEN: 4023 No ground water 3.9 No ground water 4.0 Refusal @ 2200mm on Sandstone 4.0 Refusal @ 1400mm on Sandstone

CLIENT: Aurecon SA (Pty) Ltd PROJECT: AGREERING MATERIALS AND GEOTECHNICAL LABORATORY REF: MT32019 TEST PIT LOGS A urecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 ALTERNATIVE RESERVOIR SITE MT32019 TLB DATE: 02-06-2017

Position:	RES Trial Hole 9A	
r oonton.	S 32°02'11.9"	
	E 27°49'40.1"	
0.0		
	Moist, light Brown, soft, intact,	
0.1 : : : :	sandy silt + Roots.	
	Transported:	
0.2 : : : :		
<u>``</u> ` ` `		
0.3 : : : : :		
0.4 : : : :		
<u>0.4</u> : : : :		
0.5 : : : : :		
	Slightly moist, light Brown, extremely hard,	
0.6 : : : : :	shattered, Sandstone + silty sand.	
:, :, :,:	Residual:	
0.7 : : : : : :		
: ₁ : ₁ : ₁ :		
0.8 : : : : : : :		
0.9		
1.0 : : : : : : :		
:, :, :,:		
1.1 : : : : : :		
i i i i		
<u>1.2</u> : : : : : : : : : : : : : : : : : : :		
<u>1.3</u> : : : : : : : : : : : : : : : : : : :		
1.4		
1.5 : : : : : :		
	SAMPLE TAKEN: 4028	
	No ground water.	

Refusal @ 1500mm on Sandstone

VÀ

Aurecon SA (Pty) Ltd 1, 2, 3 CLIENT: TRIAL PIT No.'s : **ControLab South Africa (Pty) Ltd** NGQAMAKHWE RWSS PHASE 5 TLB PROJECT: EXCAVATED BY: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF: 26-04-2017 MT32019 DATE: **TEST PIT LOGS** Position: Position: AR Trial Hole 2 Position: AR Trial Hole 1 AR Trial Hole 3 S 32°02'42.3" S 32°02'47.1" S 32°02'56.6"

E 27°50'04.7" E 27°50'08.8" E 27°50'14.0" 0.0 0.0 0.0 Moist, dark Red Brown, soft, intact, Moist, dark Red Brown, soft, intact, Moist, light Brown, firm, intact, sandy silt + Roots. : | : | : silty sand + Roots. 0.1 :1 : : : silty sand + Roots + Sandstone gravel. 0.1 0.1 :1 Transported: Transported: Transported: \mathbb{R}^{2} 0.2 0.2 0.2 Moist, dark Brown, stiff, slickensided, Moist, dark Yellow Orange, very hard to :1:1: 0.3 sandy clay. Transported: 0.3 extremely hard, micro-shattered, 0.3 Sandstone + silty sand. : : Moist, Purple + light Olive, hard to extremely 0.4 Residual: 0.4 0.4 hard, shattered, Mudstone. : : : : : 0.5 0.5 0.5 Residual: Moist, light Red Brown, extremely hard, 0.6 micro-shattered, Sandstone. 0.6 0.6 Residual: 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.2 1.3 1.3 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.6 1.6 1.7 1.8 1.6 1.7 1.7 1.8 1.8 1.9 1.9 SAMPLE TAKEN: 3383 SAMPLE TAKEN: 3380 1.9 SAMPLES TAKEN: 3381, 3382 No ground water. No ground water. No ground water. 2.0 2.0 Refusal @ 750mm on Sandstone 2.0 Refusal @ 1800mm on Mudstone Refusal @ 750mm on Sandstone

ControLab South Africa (Pty) Ltd^{CLIENT:} PROJECT:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

 TRIAL PIT No.'s :
 4, 5, 6

 EXCAVATED BY:
 TLB

 DATE:
 26-04-2017

TEST PIT LOGS Position: Position: AR Trial Hole 4 AR Trial Hole 5 Position: AR Trial Hole 6 S 32°02'57.5" S 32°02'50.7" S 32°02'45.5" E 27°50'27.3" E 27°50'38.3" E 27°50'50.8" 0.0 0.0 0.0 Moist, dark Red Brown, soft, intact, Moist, light Brown, soft, intact, Moist, dark Red, soft, intact, 0.1 : 1: silty sand + Roots. 0.1 : 1 : 1 : silty sand + Roots + Sandstone gravel. 0.1 : sandy silt + Roots. Transported: Transported: : 3 Transported: 0.2 0.2 0.2 : 1: ÷ • Moist, dark Brown, firm, slickensided, 0.3 0.3 0.3 Moist, light Yellow, soft, micro-shattered, Moist, light Red Brown, hard, microweathered Sandstone. clayey silt. 0.4 Transported: 0.4 shattered, highly weathered Sandstone. 0.4 Residual: Residual: 0.5 0.5 0.5 Moist, dark Yellow Orange, very hard to : extremely hard, micro-shattered, Sandstone + 0.6 0.6 0.6 sandy silt. Residual: 0.7 0.7 0.7 : Moist, light Red Brown, very hard to : 0.8 0.8 0.8 : : : : extremely hard, micro-shattered, Sandstone + silty sand. • 0.9 0.9 : : : Residual: 0.9 : 1.0 :::: 1.0 1.0 · · · Moist, light Red Brown, very hard to : : : : : : 1.1 1.1 extremely hard, micro-shattered, 1.1 : : : : Sandstone + silty sand. 1.2 1.2 : : : : Residual: 1.2 1.3 1.3 1.3 : : : 1.4 1.4 1.4 1.5 1.5 1.5 1.6 1.6 1.6 1.7 1.7 1.7 1.8 1.8 1.8 1.9 1.9 **SAMPLES TAKEN: 3384, 3385** SAMPLE TAKEN: 3386 1.9 **SAMPLES TAKEN: 3387, 3388** No ground water. No ground water. No ground water. 2.0 2.0 Refusal @ 1000mm on Sandstone 2.0 Refusal @ 1100mm on Sandstone Refusal @ 1300mm on Sandstone

201000682907 ControLa	ab South Africa (Pty) Lto Engineering materials and geotechnical laborator	C PROJECT:	Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019	TRIAL PIT No.'s : EXCAVATED BY: DATE:	7, 8, 9 TLB 27-04-2017
		TE	ST PIT LOGS		
0.0 0.1 0.1 0.2 0.3 1 0.3 1 0.3 1 0.3 1 0.4 1 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6	<section-header><text><text><text><text></text></text></text></text></section-header>	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6	ST PIT LOGS AR Trial Hole 8 S 32º02'51.5° E 27°51'12.5° NO TEST PIT DONE - CEMETERY	0.0 0.1 : : : : : 0.2 : : : : : 0.3 : : : : : 0.3 : : : : : 0.4 : : : : : 0.5 : : : : : 0.6 : : : : : 0.7 : : : : : : 0.8 : : : : : : 0.8 : : : : : : 0.9 : : : : : : 0.9 : : : : : : 0.9 : : : : : : : 0.1 : : : : : : : 0.2 : : : : : : : : 0.3 : : : : : : : : 0.4 : : : : : : : : 0.5 : : : : : : : : : 0.6 : : : : : : : : : 0.7 : : : : : : : : : 0.8 : : : : : : : : : : 0.9 : : : : : : : : : : : : : : : : : : :	AR Trial Hole 9 S 32'02'57.7" E 27'51'20.0" Moist, dark Red, soft, intact, sandy silt + Roots. Transported:
1.7 1.8 1.9 2.0	NO SAMPLES TAKEN: No ground water. Refusal @ 500mm on Sandstone	1.7 1.8 1.9 2.0		1.7 1.8 1.9 2.0	SAMPLE TAKEN: 3389 No ground water. Refusal @ 1200mm on Sandstone Plate

0.0

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

1.1

1.2 1.3 1.4 1.5

1.6

1.7

1.8

1.9

2.0

0.5

Position:

:

: X

:

:

:

·

CLIENT: ControLab South Africa (Pty) Ltd PROJECT:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 TRIAL PIT No.'s : 10. 11. 12 TLB EXCAVATED BY:

No ground water.

No refusal @ 3000mm

3.0

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF: MT32019 DATE: 27-04-2017 **TEST PIT LOGS** Position: Position: AR Trial Hole 10 AR Trial Hole 11 AR Trial Hole 12 S 32°03'08.1" S 32°03'09.8" S 32°03'14.8" E 27°51'21.7" E 27°51'35.0" E 27°51'47.2" 0.0 0.0 Moist, dark Red Brown, soft, intact, Moist, dark Brown, soft, intact, Moist, dark Red Brown, soft, intact, 1 `:|:|:| sandy silt + Roots. 0.1 silty sand + Roots. sandy silt + Roots. 0.1 : • Transported: Transported: : Ň Transported: 0.2 0.2 : 3 0.3 : 0.3 :_: 0.4 Slightly moist, dark Brown, firm, intact, 0.4 sandy silt. 1 0.5 Transported: 0.5 Moist, light Red Brown, firm, micro-: Slightly moist, dark Brown, firm, shattered, highly weathered Sandstone. 0.6 0.6 slickensided, clayey sand. Residual: : Transported: 0.7 0.7 Moist, light Brown, very hard to : extremely hard, micro-shattered, 0.8 0.8 : Sandstone. Moist, dark Brown, stiff, slickensided, Residual: 0.9 0.9 clayey sand. Transported: 1.0 1.0 1.1 1.2 1.2 Moist, dark Brown, stiff, slickensided, Slightly moist, dark Brown, very hard clayey sand. 1.3 1.6 extremely hard, micro-shattered, Sandstone / Transported: Shale + clayey sand. 1.4 1 1.8 Residual: 1.5 2.0 1.6 2.2 1.7 2.4 1.8 2.6 1.9 SAMPLES TAKEN: SAMPLES TAKEN: 3395, 3396, 3397 2.8

No ground water.

Refusal @ 1400mm on Sandstone

2.0

SAMPLES TAKEN: 3390, 3391 No ground water. Refusal @ 740mm on Sandstone Plate

ControLab South Africa (Pty) Ltd PROJECT:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

TRIAL PIT No.'s : 13 EXCAVATED BY: TLB DATE:

27-04-2017

20100002307		W132013	L. 27-04-7	.017
		TEST PIT LOGS		
Position: 0.0 0.1 : : : : : : : : : : : : : : : : : : :	AR Trial Hole 13 S 32°03'18.5" E 27°51'59.2" Moist, dark Red, soft, intact, sandy silt + Roots. Transported:			
	Slightly moist, dark Brown, firm, slickensided, silty sand. Transported:			
1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0	Slightly moist, light Brown, very hard to extremely hard, micro-shattered, Sandstone + silty sand. Residual:			
<u>1.9</u> 2.0	SAMPLES TAKEN: 3398, 3399 No ground water. Refusal @ 1160mm on Sandstone Plate			

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY PROJECT: REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

TEST PIT LOGS

TRIAL PIT No.'s : 1, 2, 3 TLB **EXCAVATED BY:** 25-04-2017 DATE:

Main Pipeline Trial Hole 3

Position:	Main Pipeline Trial Hole 1	Position:	Main Pipeline Trial Hole 2	Position:	Main Pipeline Trial Hole 3
0.0	S 32°02'07.7" E 27°49'36.7"	0.0	S 32°02'13.9" E 27°49'46.7"	0.0	S 32°02'22.0" E 27°49'55.8"
0.1 \. : : : :	Moist, dark Yellow Orange, soft, intact,	0.1 \(\conv_1 \: 1 \: 1 \: 1 \:	Moist, dark Red, soft, intact,	0.1 : :	Moist, dark Red, hard to extremely hard,
	silty sand + Roots.		silty sand + Roots.		shattered, highly weathered Mudstone.
$\begin{array}{c c} 0.3 \\ \hline 0.4 \end{array}$	Transported:		Transported:	0.2 : :	clayey sand.
0.4				0.3 : :	Refusal:
0.7 0.8	Moist, light Orange, soft to firm, intact,	0.4 : :	Moist, Pale Red, hard to extremely	0.4 : :	
0.8 : : : : : :	silty sand.	::	hard, micro-shattered, Sandstone +		
0.9 : : : : 1.0 : : : :	Transported:	0.5 : :	clayey sand.	0.5 : :	
		0.6 : :	Residual:	0.6	
$\begin{array}{c c} 1.1 & \vdots & \vdots & \vdots \\ \hline 1.2 & \vdots & \vdots & \vdots & \vdots \\ \hline \end{array}$					
1.3		0.7 : :		0.7 : :	
$\begin{array}{c c} 1.3 \\ \hline 1.4 \\ \hline .1.4 \\ \end{array} \begin{array}{c c} 1 \\ 1 \\ \hline .1 \\ 1 \\ \hline .1 $					
<u> </u>		0.8 : :		0.8 : :	
	Maint dade Danwar Oran an anti ta firm				
$\begin{array}{c c} 1.7 & \vdots & \vdots & \vdots \\ \hline 1.8 & \vdots & \vdots & \vdots & \vdots \\ \end{array}$	Moist, dark Brown Orange, soft to firm, intact, silty sand.	0.9		0.9 : :	
1.9	Transported:	1.0		1.0	
2.0 : : : : :					
$\begin{array}{c c} 2.1 & \vdots & \vdots & \vdots \\ \hline 2.2 & \vdots & \vdots & \vdots & \vdots \\ \hline 2.3 & \vdots & \vdots & \vdots & \vdots \\ \hline 2.4 & \vdots & \vdots & \vdots & \vdots \\ \hline 2.4 & \vdots & \vdots & \vdots & \vdots \\ \hline \end{array}$		1.2		1.2 : :	
2.2 : : : : : :					
$\frac{2.3}{2.4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		1.4		1.4 : :	
2.5 : : : : : :		1.6		1.6 : :	
2.6 : : : : :					
$\begin{array}{c c} 2.7 \\ \hline 2.8 \\ \end{array} \begin{array}{c c} & \vdots \\ & \vdots $		<u>1.8</u> 2.0		1.8 : :	
		2.0		2.0	
<u>2.9</u> : : : : : 3.0 : : : : : :		22		2.2	
3.1 : : : :		2.2			
3.2 3.3 3.4 3.5		2.4		2.4	
3.3	SAMPLES TAKEN: 3307A, 3307B		SAMPLES TAKEN: 3308A, 3308B		SAMPLE TAKEN: 3309
3.4	No ground water	2.6 2.8	No ground water	2.6	No ground water
3.5	No refusal 3100mm	2.8	Refusal @ 800mm on Sandstone	2.8	Refusal @ 2000mm on Mudstone

CLIENT: ControLab South Africa (Pty) Ltd PROJECT:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

4, 5, 6 TRIAL PIT No.'s : EXCAVATED BY: TLB DATE:

26-04-2017

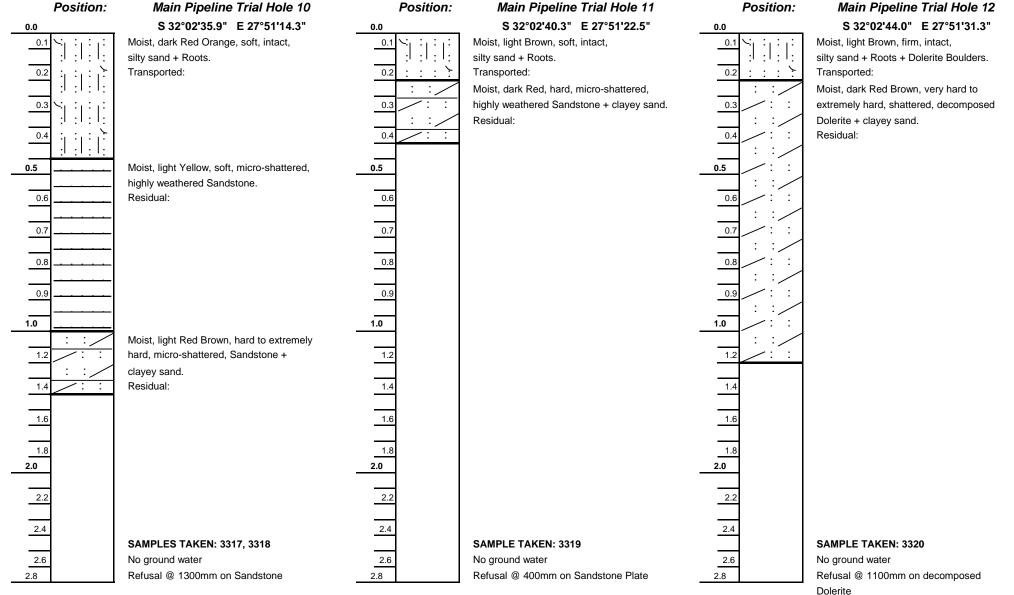
TEST PIT LOGS							
Position:	Main Pipeline Trial Hole 4	Position:	Main Pipeline Trial Hole 5	Position:	Main Pipeline Trial Hole 6		
0.0	S 32°02'30.1" E 27°50'02.0"	0.0	S 32°02'38.2" E 27°50'11.5"	0.0	S 32°02'39.4" E 27°50'23.7"		
0.1 \. : : : :	Moist, light Brown, soft, intact,	<u>0.1 \: : : : : : : : : : : : : : : : : : :</u>	Moist, dark Red, soft, intact,	0.1 \. : : : :	Moist, light Brown, soft, intact,		
	silty sand + Roots.	; !; !; !; !;	silty sand + Roots.	; ! : ! : !; [silty sand + Roots + Sandstone gravel.		
	Transported:		Transported:	0.2 : : : :	Transported:		
				0.3	Moist, light Red Brown, extremely hard,		
0.3 \. : : : :	Maint light Over hand mine chattered	0.3 \: : : : : :		0.3 : : : : : :	micro-shattered, Sandstone + silty sand. Residual:		
0.4 : : : :	Moist, light Grey, hard, micro-shattered, highly weathered Sandstone + sitly sand. Residual:	0.4		0.4	Residual:		
0.4	Moist, light Grey, extremely hard,	<u> </u>	Moist, dark Red Orange, very hard to	0.4			
0.5	micro-shattered, Sandstone.	0.5	extremely hard, micro-shattered, Sandstone +	0.5			
	Residual:	: : : : : :	silty sand.				
0.6		0.6 : : : : :	Residual:	0.6			
0.7		0.7		0.7			
0.7				0.7			
0.8		0.8 : : : : :		0.8			
0.9		0.9 : : : : : :		0.9			
1.0	<u> </u>	1.0		1.0			
12		1.2		1.2			
1.2		1.2		1.2			
1.4		1.4		1.4			
1.6		1.6		1.6			
1.8		1.8		1.8			
2.0		<u>1.8</u> 2.0		<u>1.8</u> 2.0			
	-						
2.2		2.2		2.2			
				2.4			
2.4	SAMPLE TAKEN: 3310	2.4	SAMPLES TAKEN: 3311, 3312	2.4	NO SAMPLES TAKEN:		
26	No ground water	26	No ground water	26	No ground water		
2.6 2.8	Refusal @ 830mm on Sandstone	2.6 2.8	Refusal @ 1000mm on Sandstone	2.6 2.8	Refusal @ 280mm on Sandstone Plate		
		-					

ControLab South Africa (Pty) Ltd CLIENT: Aurecon SA (Pty) Ltd TRIAL PIT No.'s: 7, 8, 9 CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY PROJECT: NGQAMAKHWE RWSS PHASE 5 EXCAVATED BY: TLB REF: MT32019 DATE: 26-04-2017

201000682

		TI	EST PIT LOGS		
Position:	Main Pipeline Trial Hole 7	Position:	Main Pipeline Trial Hole 8	Position:	Main Pipeline Trial Hole 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S 32°02'39.1" E 27°50'36.8" Moist, light Brown, soft, intact, silty sand + Roots. Transported: Moist, light Red Brown, hard, micro- shattered, highly weathered Sandstone. Transported: Moist, light Brown, very hard to extremely hard, micro-shattered, Sandstone + silty sand. Residual:	0.0 0.1 0.2 0.2 0.2 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.7 0	S 32°02'38.2" E 27°50'49.8" Moist, light Brown, soft, intact, silty sand + Roots. Transported: Moist, light Red Brown, extremely hard, micro-shattered, Sandstone. Sandstone + silty sand. Residual:	0.0 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.6 0.7 0.7 0.7 0.0 0.7 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0	S 32°02'36.0" E 27°51'01.3" Moist, light Brown, soft, intact, silty sand + Roots. Transported: Moist, light Red Brown, extremely hard, micro-shattered, Sandstone + silty sand. Residual:
0.8 0.9 1.0 1.2 1.4 1.4 1.6 1.8 2.0		0.8 0.9 1.0 1.2 1.4 1.4		0.8 0.9 1.0 1.2 1.4 1.6	
1.8 2.0 2.2 2.4 2.4 2.6 2.8	SAMPLES TAKEN: 3313, 3314 No ground water Refusal @ 600mm on Sandstone	2.0 2.2 2.2 2.4 2.4 2.6 2.8	SAMPLE TAKEN: 3315 No ground water Refusal @ 700mm on Sandstone Plate	1.8 2.0 2.2 2.4 2.4 2.6 2.8	SAMPLE TAKEN: 3316 No ground water Refusal @ 210mm on Sandstone Plate

PROJECT: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:


Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

TEST PIT LOGS

TRIAL PIT No.'s : TLB **EXCAVATED BY:** DATE:

10, 11, 12 26-04-2017

Main Pipeline Trial Hole 12

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

TEST PIT LOGS

 TRIAL PIT No.'s :
 13

 EXCAVATED BY:
 TL

 DATE:
 26

13, 14, 15 TLB 26-04-2017 & 27-04-2017

Position:	Main Pipeline Trial Hole 13	Position:	Main Pipeline Trial Hole 14	Position:	Main Pipeline Trial Hole 15
0.0	S 32°02'53.8" E 27°51'33.7"	0.0	S 32°03'01.1" E 27°51'38.9"	0.0	S 32°03'07.5" E 27°51'49.9"
0.1 \. : : : :	Moist, light Brown, firm, intact,	0.1 \	Moist, dark Red Orange, soft, intact,	0.1 \: : : : : :	Moist, dark Red, soft, intact,
	silty sand + Roots + Sandstone gravel.	0.2 : : : : : :	silty sand + Roots.	:1:1:1:	silty sand + Roots.
0.2 : : : .	Transported:	0.3 : : : :	Transported:	0.2 : : : : :	Transported:
	Moist, light Brown, very hard to extremely	0.4 : : : : : : :			
0.3 : : : : :	hard, micro-shattered, Sandstone +	<u>0.5</u> ∖_ : : :		0.3	Moist, dark Red Orange, very hard to
	silty sand.	<u>0.6</u> : : : :			extremely hard, micro-shattered,
0.4	Residual:	0.7 : : : :		0.4	Sandstone.
		0.8 : : : : : : 0.9 \: : : : : : :			Residual:
0.5		<u>0.9</u> (0.5	
0.6		1.1		0.6	
		1.2			
0.7		1.3 : : :	Slightly moist, dark Brown, firm,	0.7	
		1.4 : : :	slickensided, sandy clay.		
0.8		1.5 : : :	Transported:	0.8	
		1.6 : : :			
0.9		1.7 : : :		0.9	
1.0		1.8		1.0	
1.0		<u>1.9</u> : : : : : : : : : : : : : : : : : : :		1.0	
1.2		2.1 : : :		12	
1.2				1.2	
1.4		2.2 : : : : : : : : : : : : : : : : : :		1.4	
		2.4	Slightly moist, light Red Brown, soft to hard,		
1.6		<u>2.4</u> : : : : : 2.5 : : : : :	micro-shattered, highly weathered	1.6	
		2.6	Sandstone + silty sand		
1.8		2.7 : : : : : :	Residual:	1.8	
2.0		2.8 : : : :		2.0	
		2.9 : : : : : 3.0 : : : : :			
2.2				2.2	
2.4		32		2.4	
<u></u>	SAMPLE TAKEN: 3321	3.3	SAMPLE TAKEN: 3323		SAMPLES TAKEN: 3324A, 3324B
2.6	No ground water	3.4	No ground water	2.6	No ground water
2.8	Refusal @ 300mm on Sandstone Plate	3.1 3.2 3.3 3.4 3.5	No refusal @ 3000mm	2.8	Refusal @ 650mm on Sandstone
	- 				

ControLab South Africa (Pty) Ltd CLIENT: Aurecon SA (Pty) Ltd TRIAL PIT No.'s : 16, 17, 18 TLB PROJECT: **NGQAMAKHWE RWSS PHASE 5** EXCAVATED BY: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY MT32019 **REF:** 28-04-2017 DATE: **TEST PIT LOGS** Position: Main Pipeline Trial Hole 16 Position: Main Pipeline Trial Hole 17 Position: Main Pipeline Trial Hole 18 S 32°03'15.2" E 27°51'59.4" S 32°03'18.9" E 27°52'10.8" S 32°03'20.9" E 27°52'23.9" 0.0 0.0 0.0 Moist, dark Red Orange, soft, intact, ÷ Moist, dark Red Orange, soft, intact, Moist, dark Red Orange, soft, intact, 0.1 0.1 0.1 :1:1: • : 1: silty sand + Roots + Sandstone gravel. silty sand + Roots. :1 silty sand + Roots. Transported: Transported: Transported: 0.2 0.2 0.2 0.3 Moist, dark Red Orange, very hard to 0.3 0.3 extremely hard, micro-shattered, Sandstone. Residual: 0.4 0.4 0.4 0.5 0.5 0.5 \sim : 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.2 1.4 1.6 1.2 1.2 1.4 1.4 1.6 1.6 1.8 **2.0** 1.8 **2.0** 1.8 2.0 2.2 2.2 2.2 2.4 2.4 2.4 NO SAMPLE TAKEN: SAMPLE TAKEN: 3326 SAMPLE TAKEN: 3327 2.6 2.6 2.6 No ground water No ground water No ground water 2.8 Refusal @ 570mm on Sandstone 2.8 Refusal @ 500mm on Sandstone Plate 2.8 Refusal @ 450mm on Sandstone Plate

PROJECT: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd **NGQAMAKHWE RWSS PHASE 5** MT32019

TRIAL PIT No.'s : 19, 20, 21 TLB **EXCAVATED BY:** DATE:

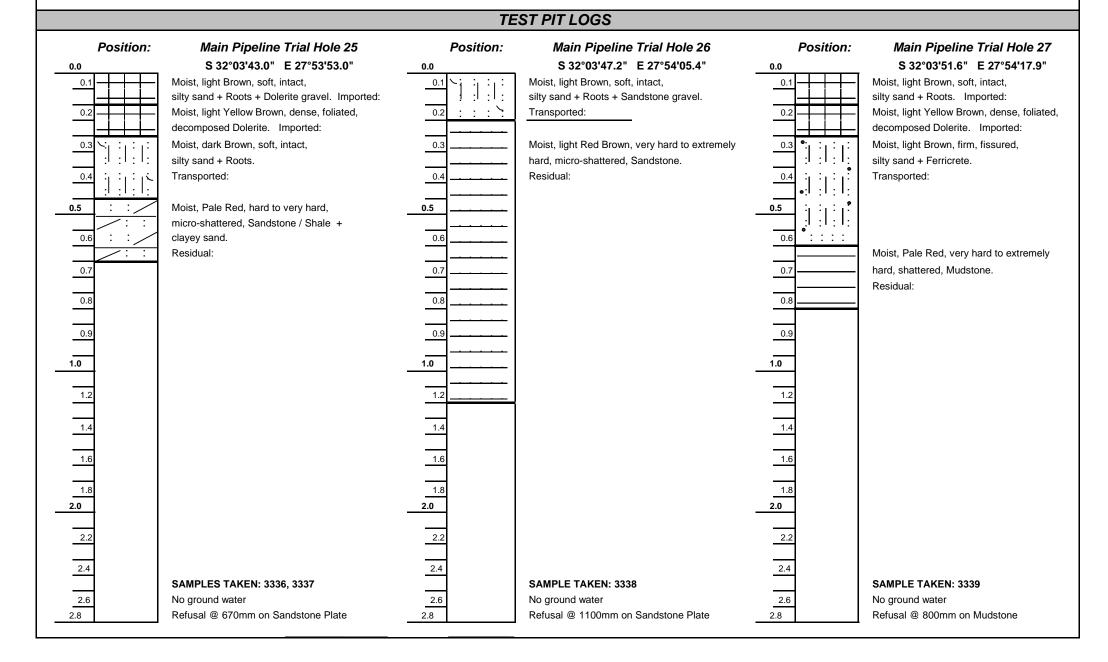
28-04-2017

TEST PIT LOGS Main Pipeline Trial Hole 19 Main Pipeline Trial Hole 20 **Position:** Position: Position: Main Pipeline Trial Hole 21 S 32°03'22.9" E 27°52'37.0" S 32°03'25.1" E 27°52'50.3" S 32°03'27.6" E 27°53'03.3" 0.0 0.0 0.0 Moist, dark Brown, soft, intact, Moist, light Brown, soft, intact, 0.1 Moist, dark Red Orange, soft, intact, 0.1 0.1 1111 ÷ 1 : | : : : 1 : silty sand + Roots + Dolerite Boulders. silty sand + Roots + Dolerite / Sandstone silty sand + Roots. 0.2 0.2 Transported: 0.2 · gravel. Transported: Moist, Pale Red, very hard to extremely 0.3 hard, micro-shattered, Sandstone. 0.3 0.3 Residual: 0.4 0.4 0.4 Moist, dark Red Orange, very hard to 0.5 Moist, dark Brown, very hard to extremely extremely hard, shattered, Sandstone. 0.5 0.5 hard, micro-shattered, Sandstone. Residual: 0.6 Residual: 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.0 1.2 1.4 1.6 1.8 2.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 2.0 2.0 2.2 2.4 2.6 2.8 2.2 2.2 2.4 2.4 SAMPLE TAKEN: 3328 SAMPLE TAKEN: 3329 SAMPLES TAKEN: 3330, 3331 2.6 2.6 No ground water No ground water No ground water 2.8 2.8 Refusal @ 800mm on Sandstone Plate Refusal @ 440mm on Sandstone Plate Refusal @ 1340mm on Sandstone

PROJECT: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

TRIAL PIT No.'s : 22, 23, 24 EXCAVATED BY: TLB DATE:


28-04-2017

	TEST PIT LOGS					
Position:	Main Pipeline Trial Hole 22	Position:	Main Pipeline Trial Hole 23	Position:	Main Pipeline Trial Hole 24	
0.0	S 32°03'31.2" E 27°53'16.1"	0.0	S 32°03'34.8" E 27°53'29.0"	0.0	S 32°03'38.9" E 27°53'40.3"	
	Moist, dark Grey, soft, intact, silty sand + Roots.		Moist, light Brown, soft, intact, silty sand + Roots + Sandstone gravel.	0.1	Moist, light Brown, medium dense, intact, silty sand + Roots + Dolerite gravel.	
0.2	Transported:	0.2	Transported:	0.2	Imported:	
					Moist, light Yellow Brown, dense, foliated,	
		0.3	Moist, dark Red Brown, very hard to	0.3	decomposed Dolerite. Imported:	
			extremely hard, micro-shattered,		Moist, light Olive, very hard to extremely	
		0.4	Sandstone. Residual:	0.4	hard, micro-shattered, Sandstone Residual:	
0.5		0.5		0.5		
0.6 : : : :	Maist light Dad Darrow scene hand to	0.6		0.6		
0.7	Moist, light Red Brown, very hard to extremely hard, micro-shattered,	0.7		0.7		
	Sandstone.					
0.8	Residual:	0.8		0.8		
0.9		0.9		0.9		
1.0		1.0		1.0		
1.2		1.2		1.2		
1.4		1.4		1.4		
1.4				<u>1.4</u> <u>1.6</u>		
1.6		1.6		1.6		
1.8		1.8		1.8		
<u>1.8</u> 2.0		<u>1.8</u> 2.0		2.0		
2.2		2.2		2.2		
2.4		2.4		2.4		
	SAMPLES TAKEN: 3332, 3333		SAMPLE TAKEN: 3334		SAMPLE TAKEN: 3335	
2.6 2.8	No ground water	2.6 2.8	No ground water	<u>2.6</u> 2.8	No ground water	
2.8	Refusal @ 920mm on Sandstone	2.8	Refusal @ 580mm on Sandstone	2.8	Refusal @ 520mm on Sandstone Plate	

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019 TRIAL PIT No.'s : EXCAVATED BY: DATE:

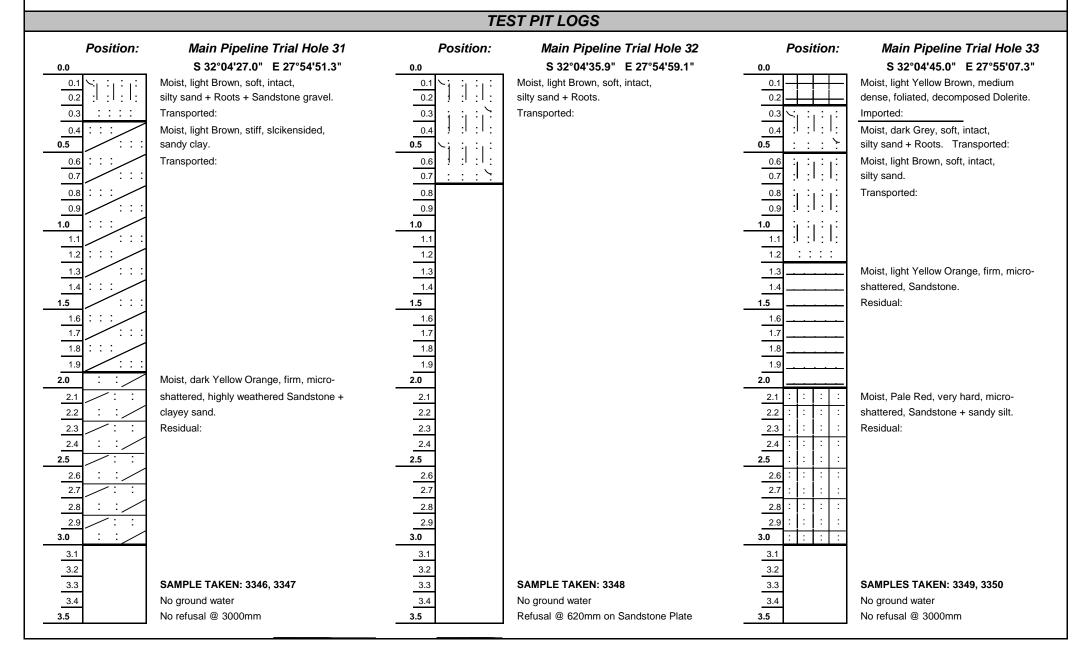
25, 26, 27 TLB 28-04-2017 & 29-04-2017

CLIENT: **ControLab South Africa (Pty) Ltd**

PROJECT: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd **NGQAMAKHWE RWSS PHASE 5** MT32019

28.29.30 TRIAL PIT No.'s : TLB EXCAVATED BY: DATE:

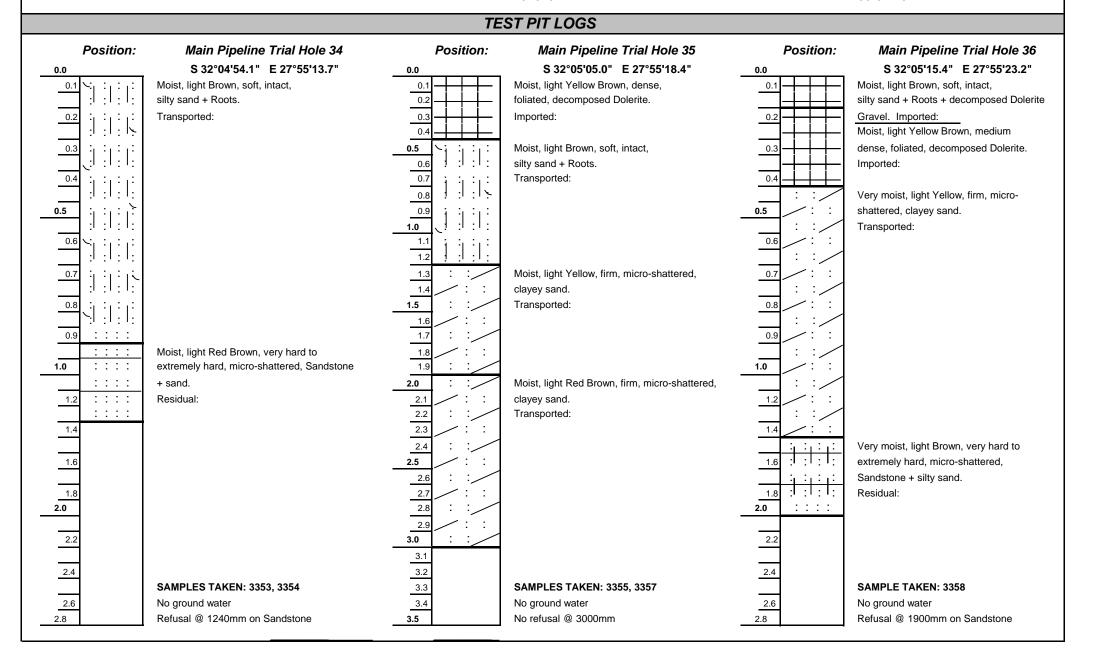

29-04-2017

TEST PIT LOGS Main Pipeline Trial Hole 29 Position: Main Pipeline Trial Hole 28 Position: Position: Main Pipeline Trial Hole 30 S 32°03'59.1" E 27°54'27.2" S 32°04'08.3" E 27°54'35.2" S 32°04'17.9" E 27°54'43.5" 0.0 0.0 0.0 Moist, light Yellow Brown, medium dense, Moist, light Yellow Brown, medium Moist, light Brown, soft, intact, 0.1 0.1 0.1 foliated, decomposed Dolerite. Imported: dense, foliated, decomposed Dolerite. silty sand + Roots. Moist, light Brown, soft, intact, 0.2 :| Transported: 0.2 0.2 Imported: ÷. : : silty sand + Roots. : | 0.3 Transported: 0.3 :1: Moist, dark Red Brown, soft, intact, 0.3 : silty sand + Roots. 0.4 0.4 Transported: 0.4 0.5 0.5 0.5 × : : : Slightly moist, light Red Orange, very 0.6 0.6 hard, to extremely hard, foliated, 0.6 decomposed Dolerite + silty clay. Moist, light Yellow, soft, intact, 0.7 ÷ 0.7 :1:1: 0.7 Moist, light Red Orange, very hard to extremely Residual: cobbles + silty sand. hard, micro-shattered, Sandstone. Transported:] 0.8 0.8 0.8 Residual: 0.9 0.9 ÷ : I 0.9 1.0 • 1.0 1.0 1.2 1.2 1.2 1.4 1.4 · 1.4 : Moist, light Yellow Orange, firm, • : 1.6 1.6 micro-shattered, clayey sand + Ferricrete. 1.6 Transported: 1.8 **2.0** 1.8 **2.0** :• 1.8 Moist, light Red Brown, very hard to 1.9 2.2 2.2 extremely hard, micro-shattered, 2.0 Sandstone. Residual: 2.4 2.4 **SAMPLES TAKEN: 3340, 3341** SAMPLES TAKEN: 3342A, 3342B 2.2 SAMPLES TAKEN: 3343, 3344A 2.6 2.6 No ground water No ground water No ground water 2.8 2.8 2.4 Refusal @ 1100mm on Sandstone Refusal @ 1100mm on decomposed Dolerite Refusal @ 2000mm on Sandstone

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019 TRIAL PIT No.'s : EXCAVATED BY: DATE:

31, 32, 33 TLB 29-04-2017 & 30-04-2017



PROJECT: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

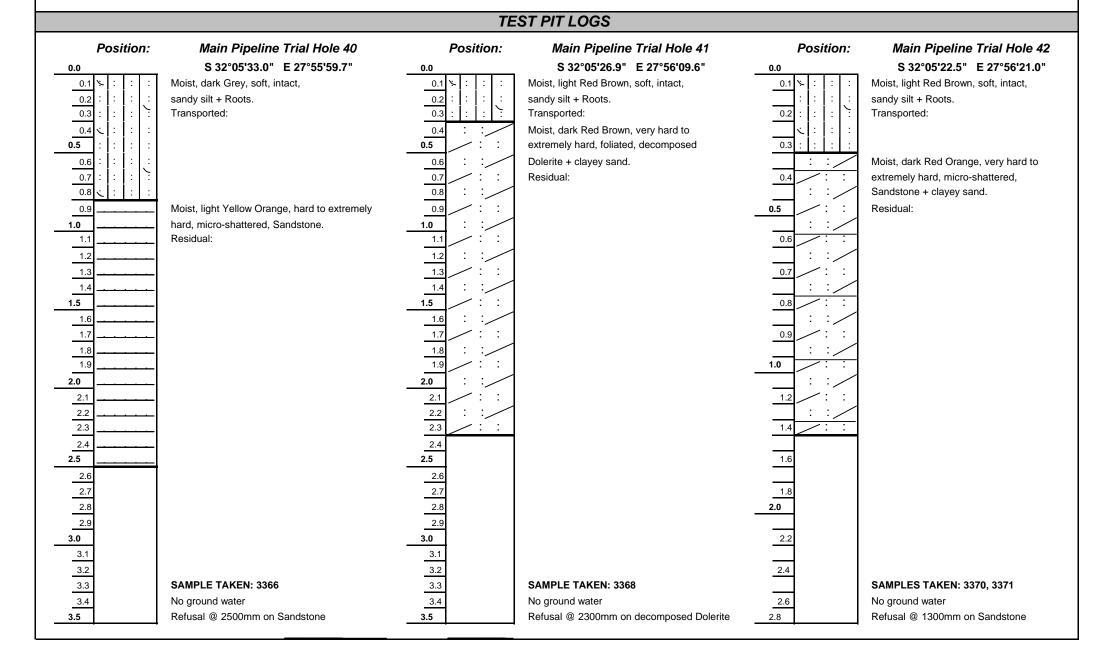
TRIAL PIT No.'s : 34, 35, 36 TLB **EXCAVATED BY:** DATE:

30-04-2017

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

37, 38, 39 TRIAL PIT No.'s : EXCAVATED BY: TLB DATE:


30-04-2017

		TE	ST PIT LOGS		
Position:	Main Pipeline Trial Hole 37	Position:	Main Pipeline Trial Hole 38	Position:	Main Pipeline Trial Hole 39
0.0	S 32°05'25.0" E 27°55'28.6"	0.0	S 32°05'35.1" E 27°55'34.1"	0.0	S 32°05'35.8" E 27°55'46.4"
0.1 \: : : : : :	Moist, light Brown, soft, intact,	0.1 \ : : :	Moist, light Red, soft, intact,	0.1 🍾 🗄 🗧	Moist, light Red, soft, intact,
;!:!:!;	silty sand + Roots.	0.2 ! : ! : ! :	silty sand + Roots.	0.2 : : : : : :	sandy silt + Roots.
0.2 : : : .	Transported:	0.3 ; ; ; ; ;	Transported:		Transported:
	Moist, light Red Brown, very hard to	0.4 ! : : :		0.4 🥲 : : :	
0.3	extremely hard, micro-shattered, Sandstone.	0.5 : : :	Moist, light Red Orange, soft to hard,	0.5 : : : :	
	Residual:	0.6	micro-shattered, Sandstone + silty sand.	0.6 : : : : : 0.7 : : : : :	
0.4			Residual:		
0.5				<u>0.8</u> 0.9	Moist, light Red Orange, soft to hard, foliated, decomposed Dolerite + silty sand.
0.5		0.9 · · · · · · · · · · · · · · · · · · ·			Residual:
0.6				$\begin{array}{c c} 1.0 & \vdots & \vdots & \vdots \\ \hline 1.1 & \vdots & \vdots & \vdots \\ \end{array}$	
		1.2			
0.7		1.3		$\begin{array}{c c} 1.2 \\ \hline 1.3 \end{array} \begin{array}{c c} \vdots \\ \vdots $	
		1.4		1.4	
0.8		1.5		<u>1.4</u> : : : : : : : : : : : : : : : : : : :	
		1.6		$\begin{array}{c c} 1.6 \\ \hline 1.7 \end{array} \begin{array}{c c} \vdots \\ \vdots $	
0.9		1.7 ; ; ; ;			
		<u>1.8</u> ! : ! : ! :		$\begin{array}{c c} 1.8 & \vdots & \vdots & \vdots \\ \hline 1.9 & \vdots & \vdots & \vdots & \vdots \\ \end{array}$	
1.0		<u>1.9</u> 2.0			
4.0				<u>2.0</u>	
		2.1 2.2		2.1	
1.4		23		2.3	
		2.3		24	
1.6		2.5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		2.6		2.6	
1.8				$\begin{array}{c c} 2.6 \\ \hline 2.7 \\ \hline 2.8 \\ \hline 2.9 \\ \hline \end{array} \begin{vmatrix} \cdot \\ \cdot$	
2.0		2.7		2.8 : : : :	
		2.9 : : : :		2.9 : : : : : : :	
2.2		3.0		3.0 : : : :	
		3.1		3.1	
2.4	SAMPLES TAKEN: 3359, 3360	3.2	SAMPLES TAKEN:3361, 3362	3.2	SAMPLES TAKEN: 3364, 3365
2.6	No ground water	3.3	No ground water	3.3	No ground water
2.8	Refusal @ 400mm on Sandstone Plate	3.1 3.2 3.3 3.4 3.5	No refusal @ 3000mm	3.1 3.2 3.3 3.4 3.5	No refusal @ 3000mm

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019 TRIAL PIT No.'s :4EXCAVATED BY:TDATE:3

40, 41, 42 TLB 30-04-2017 & 02-05-2017

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

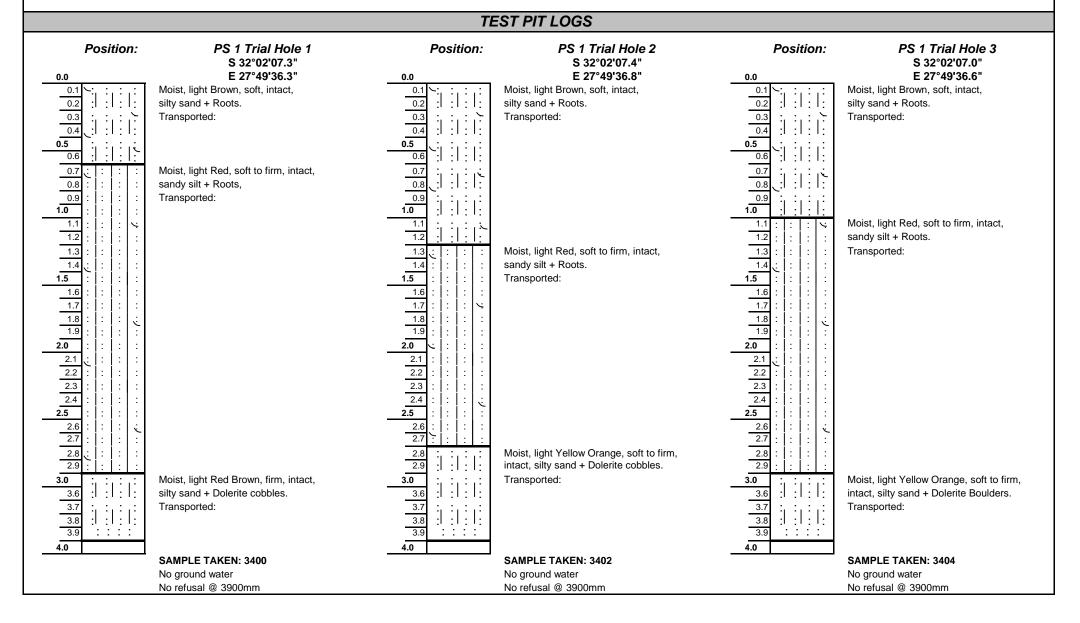
Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

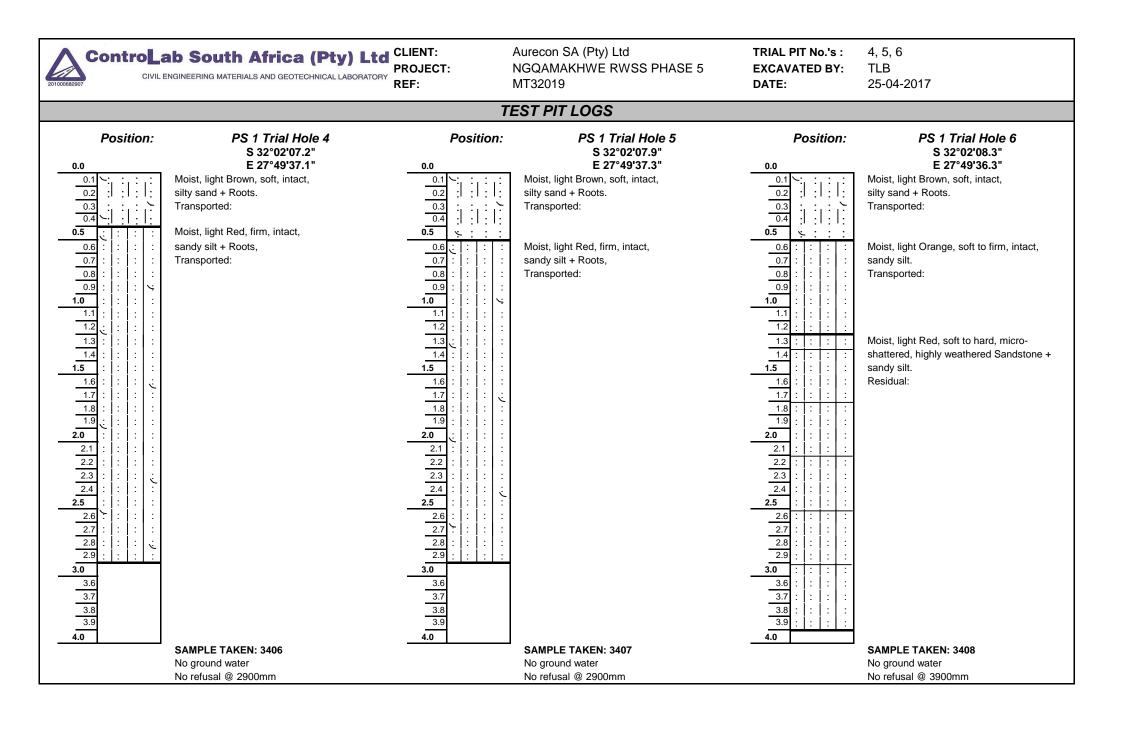
43, 44, 45 TRIAL PIT No.'s : EXCAVATED BY: TLB DATE:

02-05-2017

		TE	ST PIT LOGS		
Position:	Main Pipeline Trial Hole 43	Position:	Main Pipeline Trial Hole 44	Position:	Main Pipeline Trial Hole 45
0.0	S 32°05'21.7" E 27°56'34.5"	0.0	S 32°05'15.9" E 27°56'44.2"	0.0	S 32°05'06.4" E 27°56'50.7"
0.1 🍾 : : :	Moist, dark Brown, soft, intact,	0.1 \ : : : :	Moist, dark Brown, soft, intact,	0.1 🍾 : : :	Moist, dark Brown, soft, intact,
	sandy silt + Roots.	0.2 : : : :	silty sand + Roots.		sandy silt + Roots.
0.2 : : : :	Transported:	0.3	Transported:	0.2 : : : :	Transported:
		0.4		< : [:] :] : [
0.3 : : : :				0.3 : : : : :	
		0.6 با :ا :ا ز			
0.4 : : : :		0.7 : : : :	Moist, dark Yellow, hard, micro-shattered,		Slightly moist, dark Yellow, very hard to extremely hard, micro-shattered,
0.5		0.8 1 1 1	Sandstone + silty sand.		
		<u> </u>	Residual:	0.5	Sandstone + silty sand. Residual:
0.6 : : : :			Nesidual.	0.6	
		1.2 ; ; ; ;			
		<u>1.3</u> ! : : : 1.4 ; : : : :		0.7	
0.8 : : : : :	Moist, light Brown, very hard to extremely	1.5		0.8	
	hard, micro-shattered, Sandstone +	1.6			
0.9 : : : :	silty sand.	1.7		0.9	
:1:1:1:	Residual:	1.8 : : :			
1.0 : : : :		1.9 ! : : : :		1.0	
<u> </u>		2.0		12	
1.2		2.2		1.2	
1.4		2.3		1.4	
		2.4			
1.6		2.5		1.6	
		2.6			
<u>1.8</u> 2.0		2.7		<u>1.8</u> 2.0	
		2.8		2.0	
2.2		2.6 2.7 2.8 2.9 3.0		2.2	
		3.1			
2.4		3.2		2.4	
	SAMPLES TAKEN: 3372, 3373	3.1 3.2 3.3 3.4	SAMPLES TAKEN: 3374, 3375		SAMPLES TAKEN: 3376, 3377
2.6	No ground water	3.4	No ground water	2.6	No ground water
2.8	Refusal @ 1200mm on Sandstone	3.5	Refusal @ 2300mm on Sandstone	2.8	Refusal @ 410mm on Sandstone Plate

		CLIENT: PROJECT: REF:	Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019	TRIAL PIT No.'s : EXCAVATED BY: DATE:	46 TLB 07-05-2017
		Г	EST PIT LOGS		
Position:	Main Pipeline Trial Hole 46				
0.0	S 32°04'57.3" E 27°56'56.6"				
<u>0.1</u> % : : :	Moist, dark Brown, soft, intact,				
	sandy silt + Roots. Transported:				
	Hansporteu.				
0.3 : : : :					
0.5					
: : : >					
0.7 : : : :					
: :/	Moist, Pale Red, hard to very hard,				
0.8 : :	micro-shattered, Sandstone + clayey sand. Residual:				
0.9	Residual.				
1.0					
1.4					
1.8					
2.0 : :					
2.2 : :					
2.4 : :	SAMDI ES TAKEN, 2270 2070				
2.6 : :	SAMPLES TAKEN: 3378, 3379 No ground water				
2.8	No refusal @ 2800mm				


ControLab South Africa (Pty) Ltd CLIENT: Aurecon SA (Pty) Ltd


CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY PROJECT: REF:

NGQAMAKHWE RWSS PHASE 5 MT32019

TRIAL PIT No.'s : 1, 2, 3 TLB EXCAVATED BY: DATE:

25-04-2017

	ab South Africa (Pty) Ltd	CLIENT: PROJECT: REF:	Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019	TRIAL PIT No.'s : EXCAVATED BY: DATE:	1, 2, 3 TLB 03-05-2017
		TE	EST PIT LOGS		
Position:	<i>PS 2 Trial Hole 1</i> S 32°03'20.1" E 27°52'37.7"	Position:	<i>PS 2 Trial Hole 2</i> S 32°03'21.0" E 27°52'39.7"	Position:	<i>PS 2 Trial Hole 3</i> S 32°03'21.2" E 27°52'41.9"
0.1 0.1 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.9 1.1 1.2	Moist, light Brown, soft, intact, silty sand + Roots. Transported: Slightly moist, light Brown, soft to hard, micro-shattered, weathered Sandstone. silty sand. Residual: Slightly moist, dark Red Brown, very hard to extremely hard, micro-shattered, Sandstone + silty sand. Residual:	0.0 0.1 1 1 1 1 1 0.2 1 1 1 1 1 0.2 1 1 1 1 1 0.3 1 1 1 1 1 0.4 1 1 1 1 0.4 1 1 1 1 0.5 1 1 1 1 0.6 1 1 1 1 0.7 0.8 0.9 0.9 1.0 1.1 1.2	Moist, light Brown, soft to firm, intact, silty sand + Roots + Sandstone gravel. Transported: Moist, dark Red Brown, hard, micro-shattered, weathered Sandstone + silty sand. Residual: Slightly moist, light Brown, very hard to extremely hard, micro-shattered, Sandstone + silty sand. Residual:	0.0 0.1 : : : : 0.1 : : : : 0.2 : : : : : 0.2 : : : : : 0.3 : : : : : 0.4 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 1.0 1.1 1.2	Moist, light Brown, soft, intact, silty sand + Roots + Sandstone gravel. Transported: Moist, light Red Brown, hard, micro- shattered, weathered Sandstone. Residual:

SAMPLE TAKEN: 3410

Refusal @ 660mm on Sandstone Plate

No ground water.

1.4

1.5

SAMPLE TAKEN: 3409 No ground water.

1.4

1.5

Refusal @ 1100mm on Sandstone Plate

NO SAMPLES TAKEN: No ground water.

1.4

1.5

Refusal @ 400mm on Sandstone Plate

	South Africa (Pty) Lt		Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019	TRIAL PIT No.'s : EXCAVATED BY: DATE:	4, 5, 6 TLB 03-05-2017
		TE	EST PIT LOGS		
Position:	<i>PS 2 Trial Hole 4</i> S 32°03'22.6" E 27°52'36.7"	Position:	<i>PS 2 Trial Hole 5</i> S 32°03'22.5" E 27°52'39.2"	Position:	<i>PS 2 Trial Hole 6</i> S 32°03'23.2" E 27°52'41.1"
0.0	sist links Descent as ft interst	0.0	Maint Parks Descent and States (0.0	Maiat Bakt Dad Darway and Satast
	oist, light Brown, soft, intact, ty sand + Roots + Sandstone gravel.		Moist, light Brown, soft, intact, silty sand + Roots + Sandstone gravel.		Moist, light Red Brown, soft, intact, silty sand + Roots.
\	ansported:		Transported:		Transported:
		<u></u>	Slightly moist, light Red Brown, soft to		
0.3 :1 :1 : 1 :		0.3	hard, micro-shattered, weathered Sandstone.		
0.4		0.4	Residual:	0.4	
		<u> </u>			
0.5		0.5		0.5	
		<u> </u>		<u>::::</u>	Maint light Rod Orongo hard shottared
0.6		0.6	Olishthan sist lisht Dad Osan ay same band	0.6	Moist, light Red Orange, hard, shattered,
			Slightly moist, light Red Orange, very hard,		Mudstone.

0.7 to extremely hard, micro-shattered, 0.7 Residual: 0.7 Sandstone + clayey sand. 0.8 Residual: 0.8 0.9 **1.0** 0.9 0.9 1.0 1.0 1.1 1.1 1.1 Moist, light Yellow, very hard to : / extremely hard, micro-shattered, 1.2 1.2 1.2 : : Mudstone + clayey sand. : 1.3 1.3 Residual: 1.3 1.4 1.5 1.4 1.4 NO SAMPLE TAKEN: SAMPLE TAKEN: 3412 SAMPLES TAKEN: No ground water. No ground water. No ground water. 1.5 1.5 Refusal @ 300mm on Sandstone Plate Refusal @ 960mm on Sandstone Plate Refusal @ 1230mm on Sandstone Plate

ControLab South Africa (Pty) Ltd CLIENT:

PROJECT: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

TEST PIT LOGS

TRIAL PIT No.'s : 1, 2, 3 EXCAVATED BY: TLB 01-05-2017 DATE:

Position:	RESERVOIR Trial Hole 1 S 32°04'56.9"	Position:	RESERVOIR Trial Hole 2 S 32°04'56.5"	Position:	RESERVOIR Trial Hole 3 S 32°04'56.0"
0.0	E 27°56'56.9"	0.0	E 27°56'55.9"	0.0	E 27°56'57.3"
0.1 \: : : :	Moist, light Brown, firm, intact,	0.1 \: : : :	Moist, light Brown, soft, intact,	0.1 \: : : :	Moist, light Brown, soft, intact,
0.2 : : : : : : :	silty sand + Roots + Mudstone gravel.	0.2 : : : : : :	silty sand + Roots.	0.2 : : : :	silty sand + Roots. Transported:
0.3 : : : :	Transported:	0.3	Transported:	0.3 : :	Slightly moist, Pale Red, hard, shattered,
0.4 : : : :	Slightly moist, dark Red Brown, hard,	0.4 1 : 1 : 1 : 1 :		0.4	Shale + clayey sand.
<u>0.5</u> : : : : : : : : : : : : : : : : : : :	shattered, Mudstone + silty sand.			0.5 : :	Residual:
0.6 : : : :	Residual:	0.6 :1 :1 :1 :		0.6	
0.7 : : : : : : :		0.7	Slightly moist, Purple, hard, micro-shattered,	0.7 : :	
0.8 : : : :		0.8	Sandstone.	0.8	
		0.9	Residual:	0.9 : :	
1.0		<u>1.0</u>		<u>1.0</u> : : 1.1 : :	
		1.2		1.2	
		1.3		1.3 : :	
		1.4		1.4	
1.5 : : : : :		1.5		1.5	
1.6 ::::		1.6		1.6	
1.7 : : : : :	Moist, light Yellow Orange, soft, micro-	1.7		1.7 : : /	
1.8 : : : : : : : : : : : : : : : : : : :	shattered, Sandstone + silty sand.	1.8		1.8 : :	
1.9 : : : :	Residual:	1.9		1.9 : : /	
<u>2.0</u> : : : : : : : : : : : : : : : : : : :		2.0		2.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Moist, Pale Red, soft to hard, shattered,	2.1		2.1 : : /	
2.2 : : : : : : :	Mudstone + silty sand.	2.2		2.2 : :	
2.3 : : : :	Residual:	2.3		2.3 : :	
<u>2.4</u> : : : : : 2.5 : : : : : :		2.4		2.4	
2.6 : : : : :		2.5		2.5 : :	
2.7 : : : : :		<u>2.6</u> 2.7		<u>2.6</u> : : 2.7 : :	
2.8 : : : : :		2.8		2.8	
2.9 :1 : 1 : 1 :		2.9		2.9 : :	
3.0 : : : : :		3.0		3.0	
3.1		3.1		3.1 : :	
3.2		3.1 3.2 3.3 3.4 3.5		3.2	
3.2 3.3 3.4 3.5	SAMPLES TAKEN: 3415, 3416	3.3	SAMPLE TAKEN: 3417	3.3	SAMPLE TAKEN: 3418
3.4	No ground water	3.4	No ground water	3.3 3.4 3.5	No ground water
3.5	No refusal @ 3000mm	3.5	No refusal @ 3000mm	3.5	No refusal @ 3100mm

ControLab South Africa (Pty) Ltd CLIENT:

20100068290

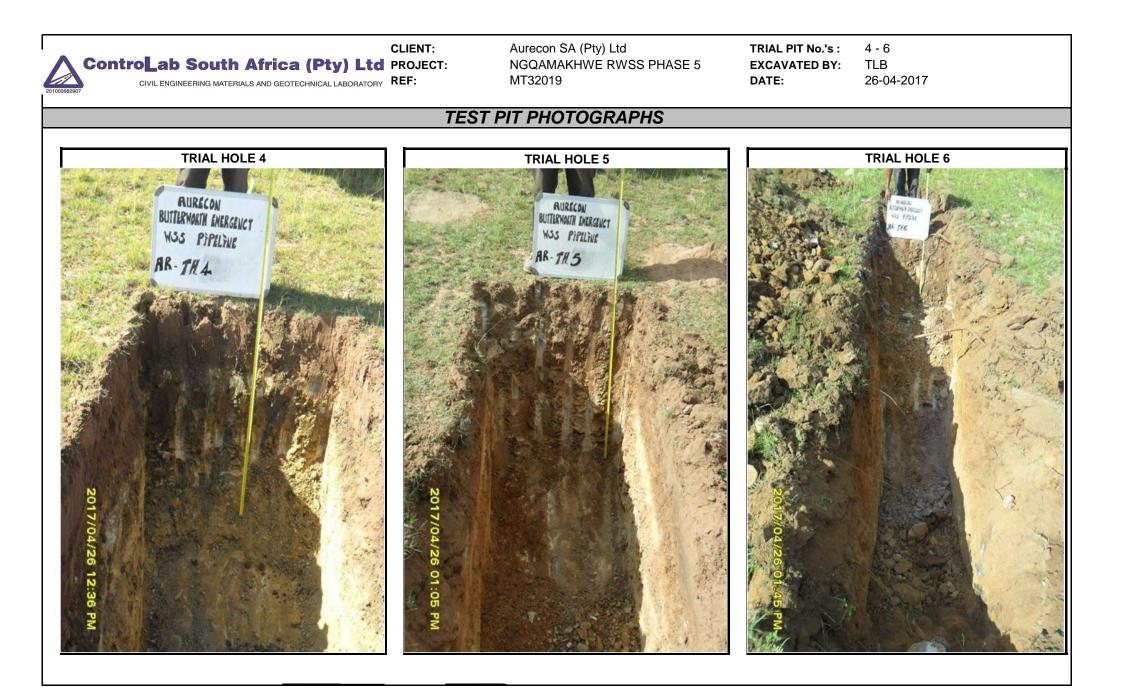
CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY REF:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

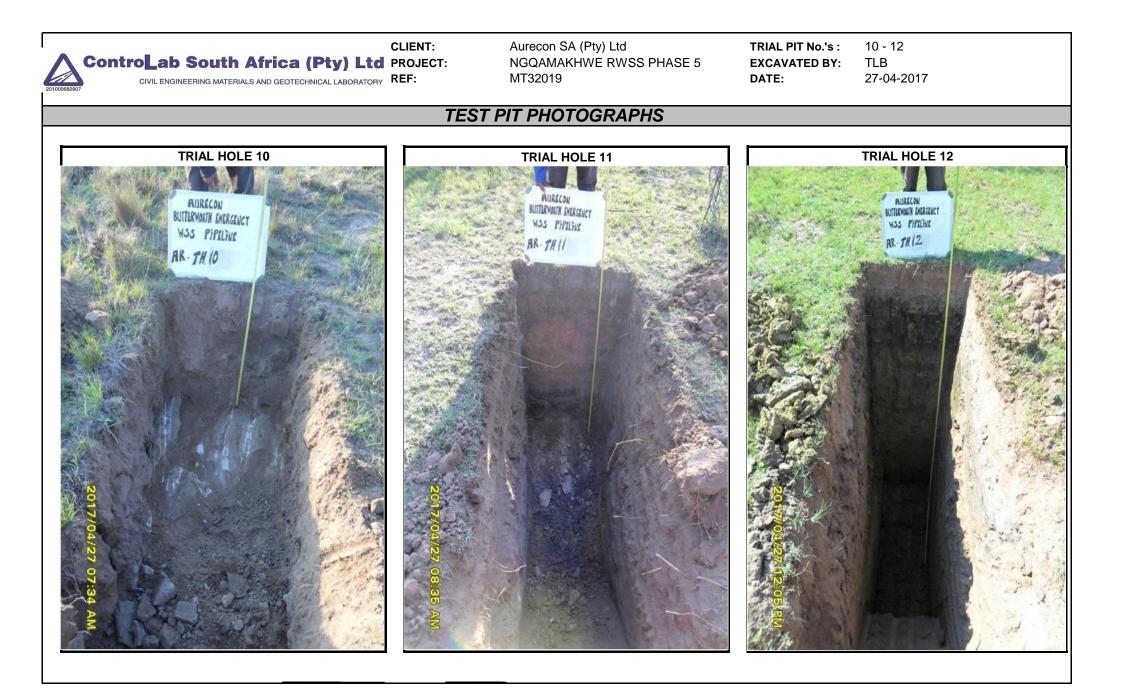
TRIAL PIT No.'s : 4, 5, 6 EXCAVATED BY: TLB DATE:

01-05-2017

		TI	EST PIT LOGS		
Position:	RESERVOIR Trial Hole 4 S 32°04'57.1"	Position:	RESERVOIR Trial Hole 5 S 32°04'57.9"	Position:	RESERVOIR Trial Hole 6 S 32°04'57.7"
0.0	E 27°56'58.2"	0.0	E 27°56'57.2"	0.0	E 27°56'56.0"
$\begin{array}{c c} 0.1 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.4 \hline$	Moist, light Brown, soft, intact, silty sand + Roots. Transported:	$\begin{array}{c c} 0.1 \\ \hline 0.2 \\ \hline 0.3 \\ \hline \vdots \\ \vdots \\$	Moist, light Brown, soft, intact, silty sand + Roots. Transported:	$\begin{array}{c c} 0.1 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 1 \\ 1 \\$	Moist, light Brown, soft, intact, silty sand + Roots. Transported:
0.4 : : : : 0.5 : : : : : 0.6 \: : : : :		<u>0.4</u> : : : <u>0.5</u> : : :	Moist, dark Brown, firm, slickensided, clayey sand. Transported:	0.4 : : : : 0.5 : : : : 0.6 \: : : :	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.7 : :		0.7 : : :	Moist, dark Brown, firm, slickensided, clayey sand.
0.9 : : 1.0 : : 1.1 : :	Slightly moist, Pale Red, hard to very hard, micro-shattered, Sandstone + clayey sand.	0.9 1.0 1.1 		0.9 : : : 1.0 : : :	Transported:
<u>1.2</u> : : <u>1.3</u> : :	Residual:	<u>1.2</u> : : <u>1.3</u> : :	Moist, Pale Red, hard to extremely hard, micro-shattered, Sandstone + clayey sand.	<u>1.2</u> : : <u>1.3</u> : :	Slightly moist, Pale Red, very hard to extremely hard, micro-shattered,
<u>1.4</u> : : <u>1.5</u> : :		<u>1.4</u> : : <u>1.5</u> : :	Residual:	<u>1.4</u> : :	Shale + clayey sand. Residual:
<u>1.6</u> : : <u>1.7</u> : :		<u>1.6</u> : : <u>1.7</u> : :		<u>1.6</u> : : <u>1.7</u> : :	
<u>1.8</u> : : <u>1.9</u> : :		<u>1.8</u> : : <u>1.9</u> : :		<u>1.8</u> : : <u>1.9</u> : :	
2.0 : : 2.1		<u>2.0</u> : :		<u>2.0</u> : : <u>2.1</u> : :	
2.1 2.2 2.3 2.4 2.5		2.2 : : 2.3 : : 2.4 : :		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2.5 2.6		2.5		2.5	
2.7 2.8		2.7 2.8		2.6 2.7 2.8 2.9	
2.6 2.7 2.8 2.9 3.0		2.6 2.7 2.8 2.9 3.0		2.9 3.0	
3.1 3.2 3.3 3.4		3.1 3.2 3.3 3.4 3.5		<u>3.1</u> 3.2	
3.3	SAMPLE TAKEN: 3419	3.3	SAMPLE TAKEN: 3420	3.2 3.3 3.4 3.5	SAMPLE TAKEN: 3421
3.4	No ground water	3.4	No ground water	3.4	No ground water
3.5	Refusal @ 2500mm on Sandstone	3.5	Refusal @ 2400mm on Sandstone	3.5	Refusal @ 2400mm on Sandstone



CLIENT: ControLab South Africa (Pty) Ltd PROJECT: CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

TRIAL PIT No.'s : 1 - 3 EXCAVATED BY: TLB DATE: 26-04-2017

CLIENT: ControLab South Africa (Pty) Ltd PROJECT:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019

TRIAL PIT No.'s : 13 EXCAVATED BY: DATE:

TLB 27-04-2017

ControLab South Africa (Pty) Ltd PROJECT:

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 MT32019
 TRIAL PIT No.'s :
 1 - 3

 EXCAVATED BY:
 TLB

 DATE:
 02-06-2017

TEST PIT PHOTOGRAPHS

TRIAL HOLE 2

KURECON ITTERNOETH DATACON

453 PHPILLIE PS1-TH2

CLIENT:

 TRIAL PIT No.'s :
 4 - 5

 EXCAVATED BY:
 TLB

 DATE:
 02-06-2017

 TRIAL PIT No.'s :
 6A - 8A

 EXCAVATED BY:
 TLB

 DATE:
 02-06-2017

 TRIAL PIT No.'s :
 9A

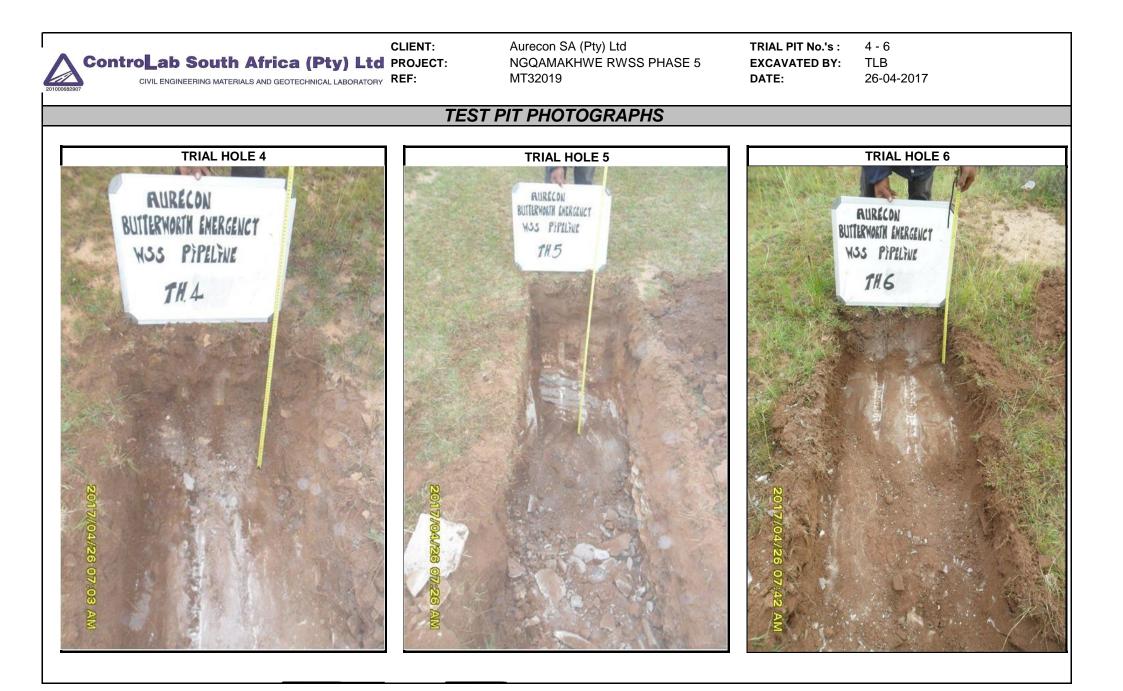
 EXCAVATED BY:
 TLB

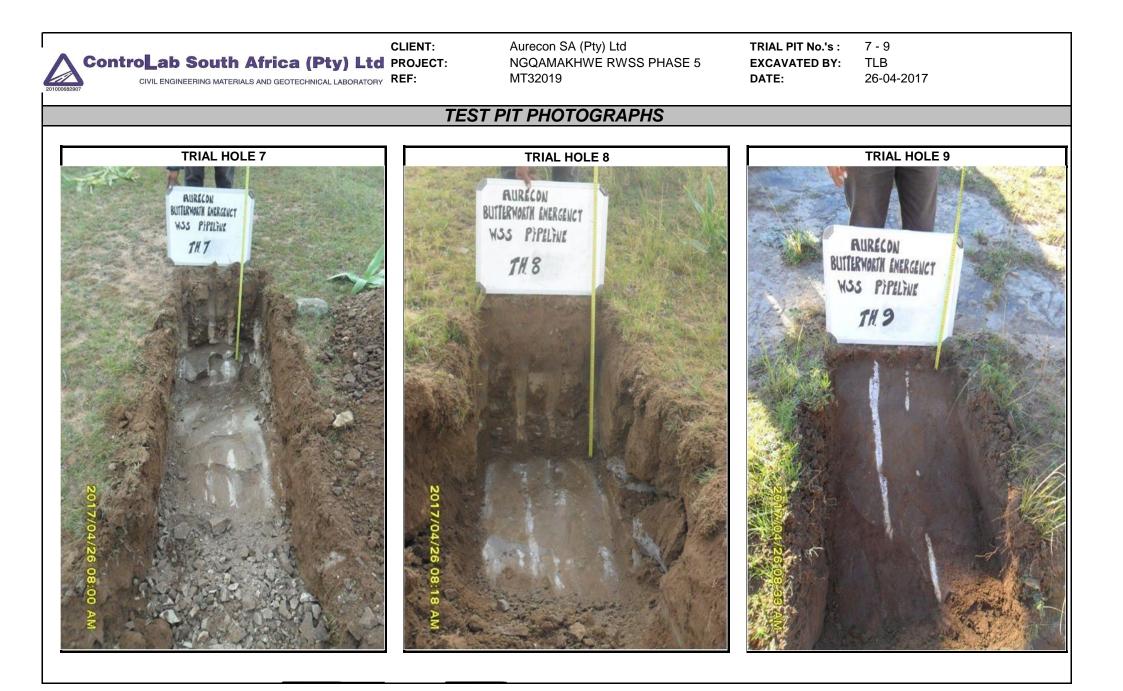
 DATE:
 02-06-2017

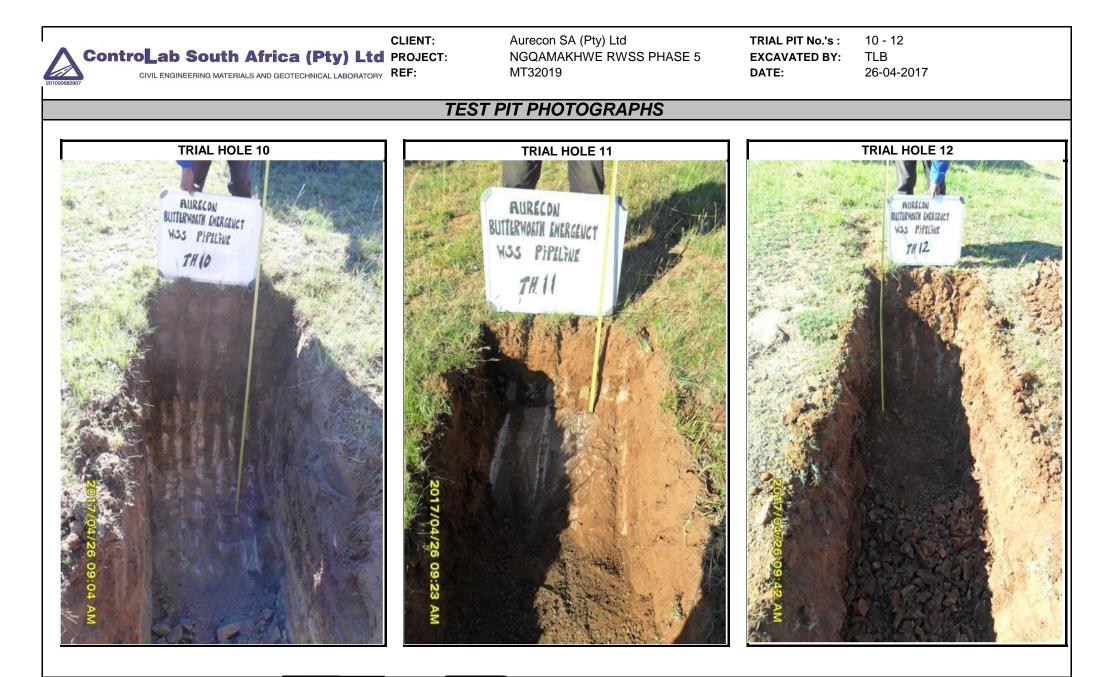
ControLab South Africa (Pty) Ltd PROJECT:

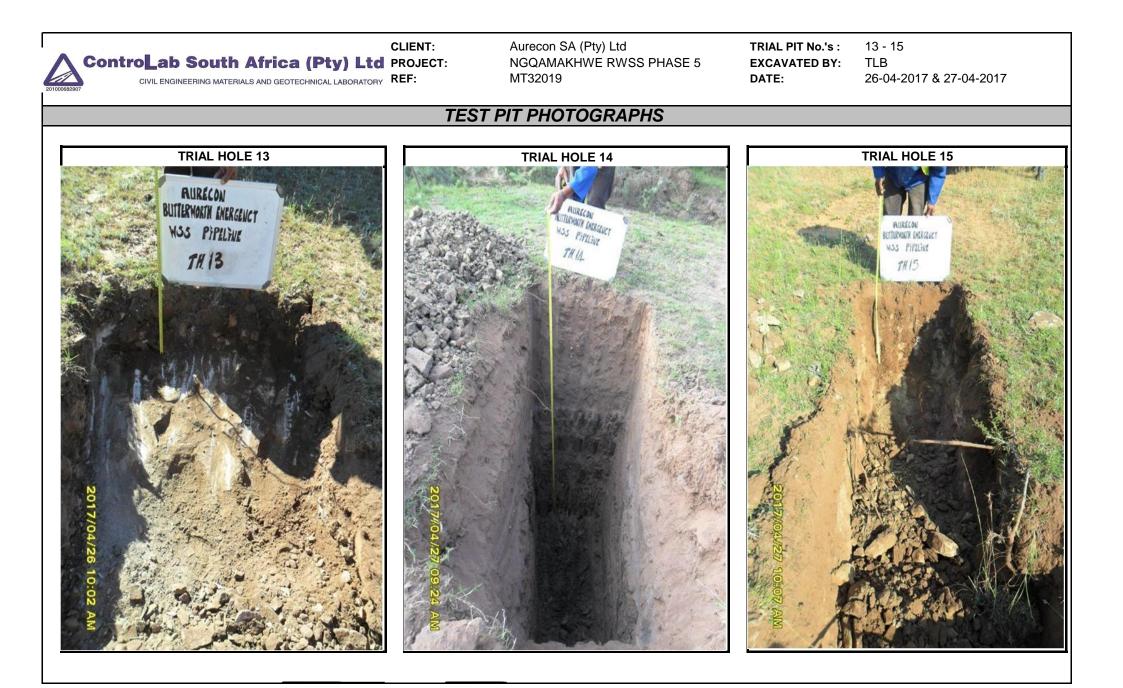
CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

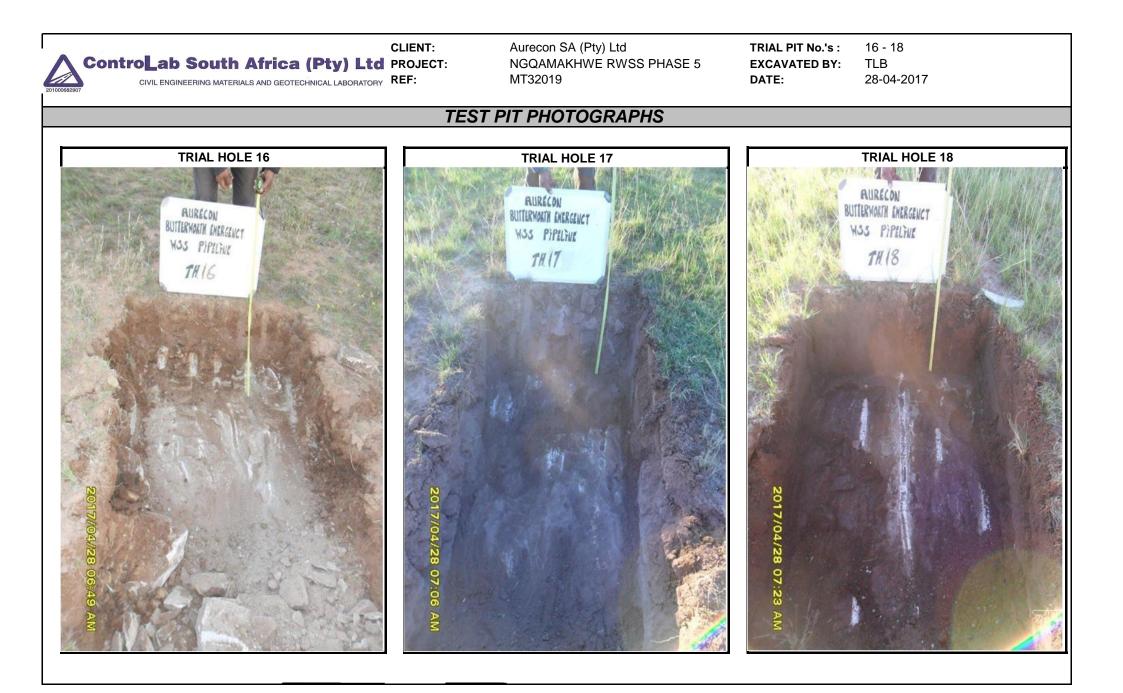
Aurecon SA (Pty) Ltd

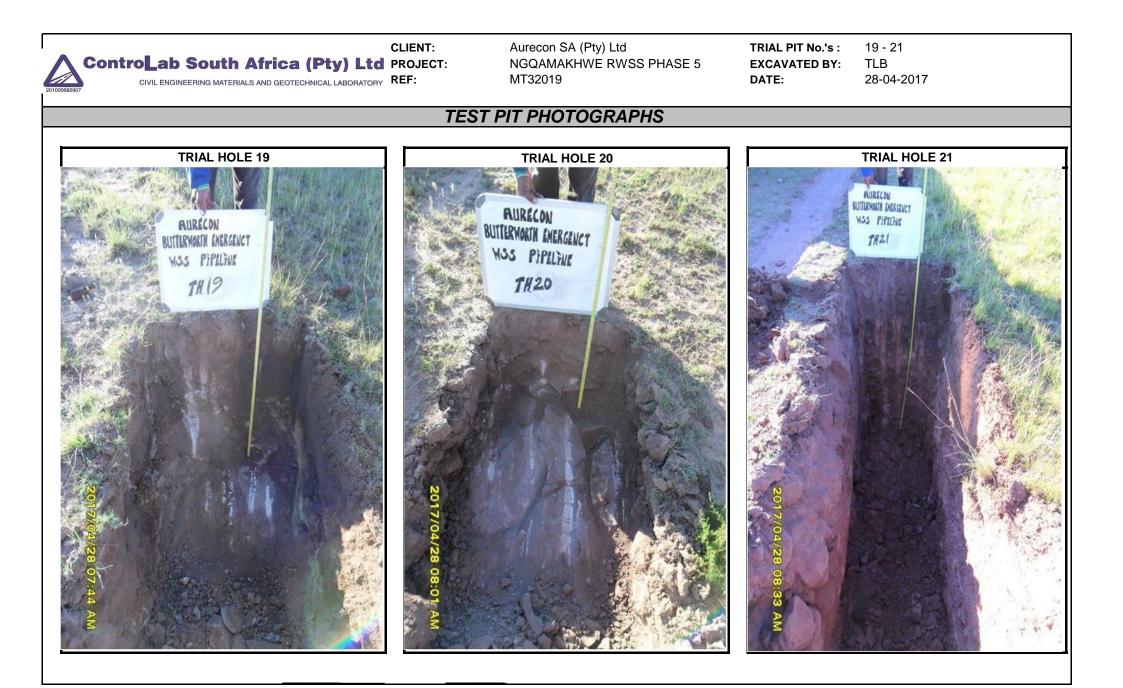

MT32019

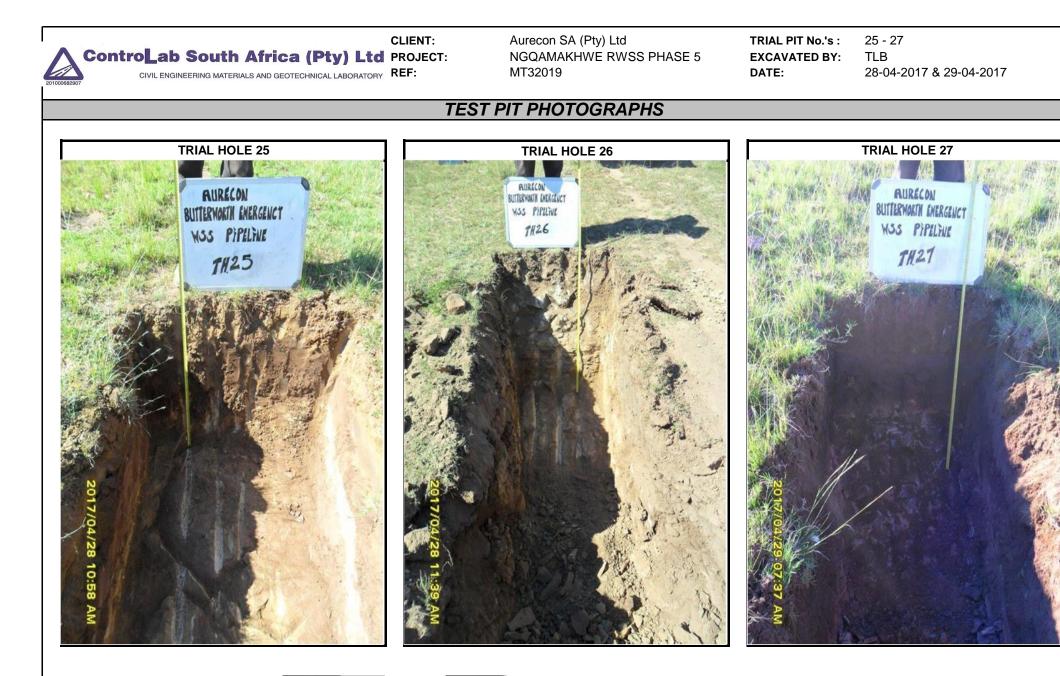

NGQAMAKHWE RWSS PHASE 5

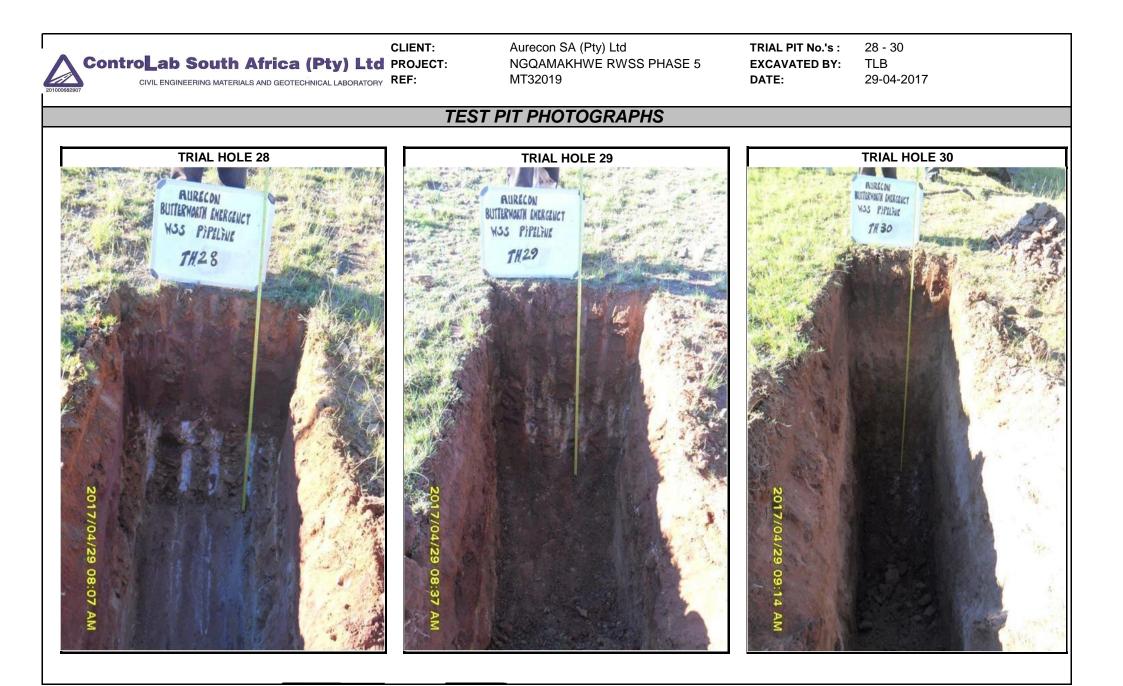

CLIENT:

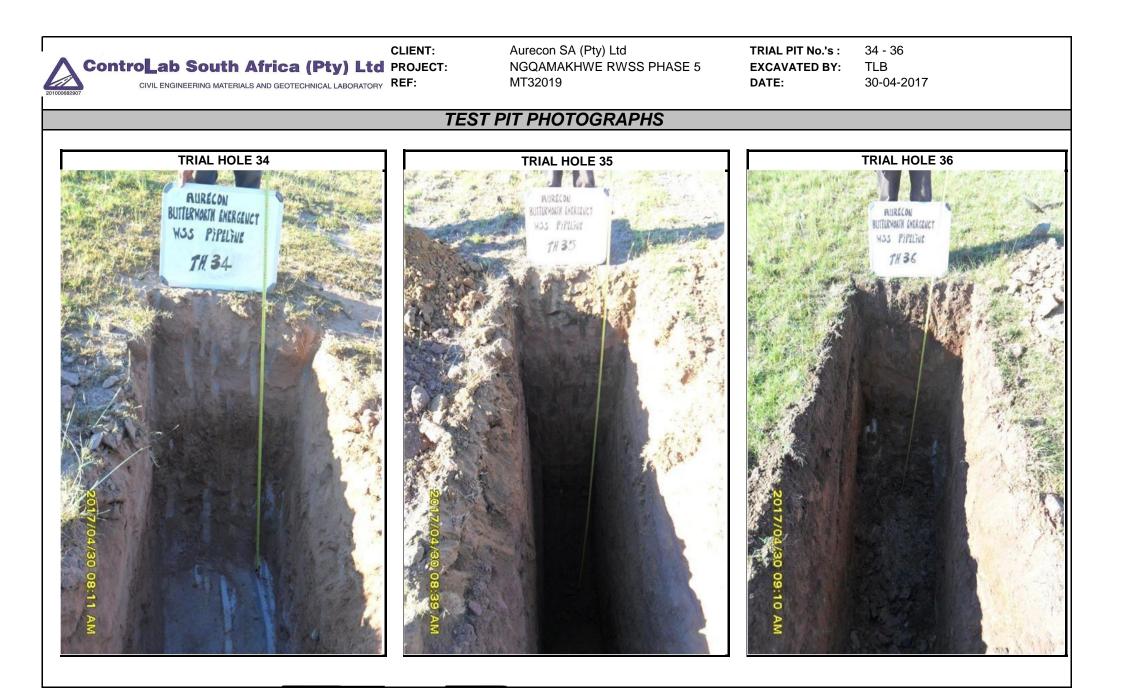




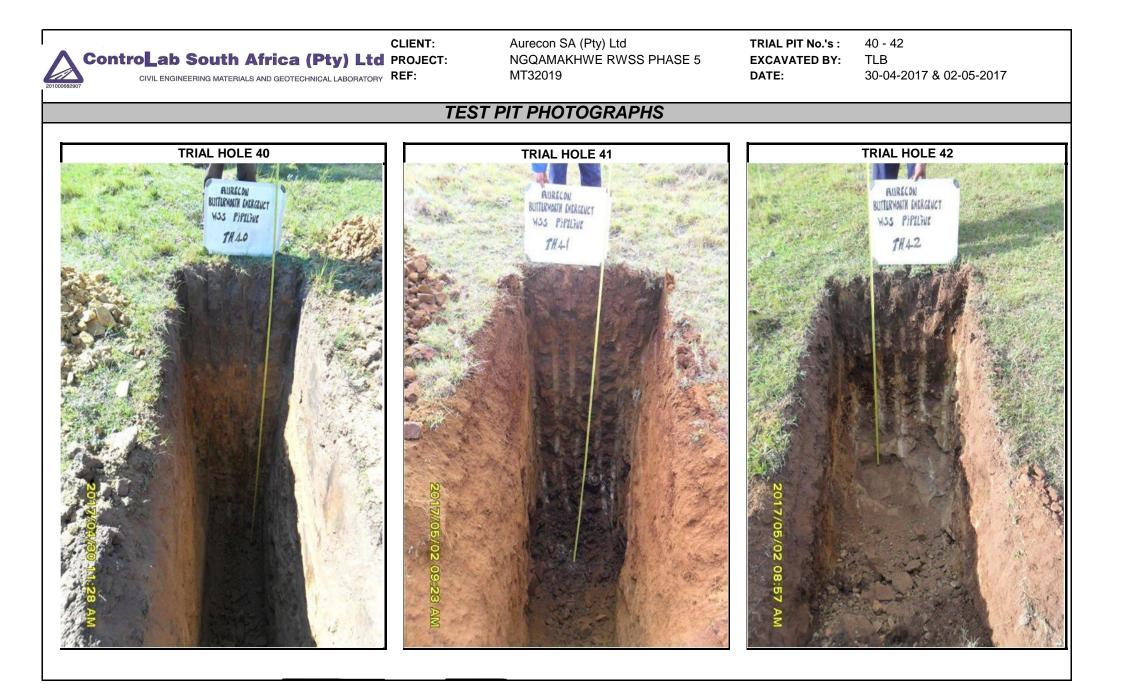


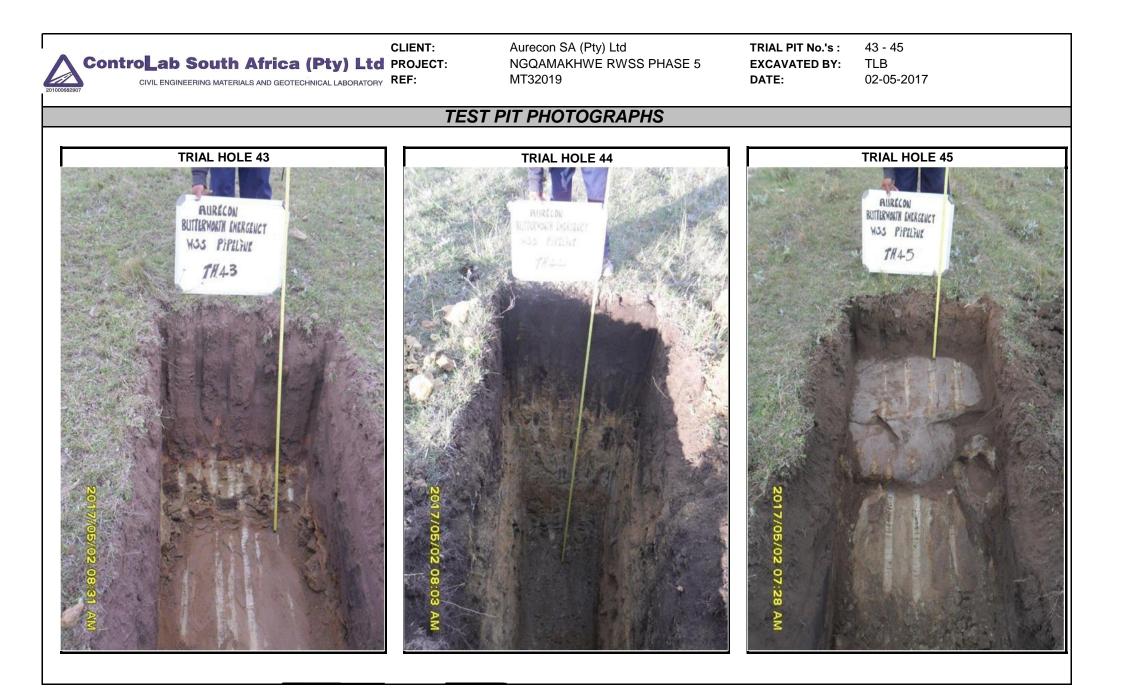




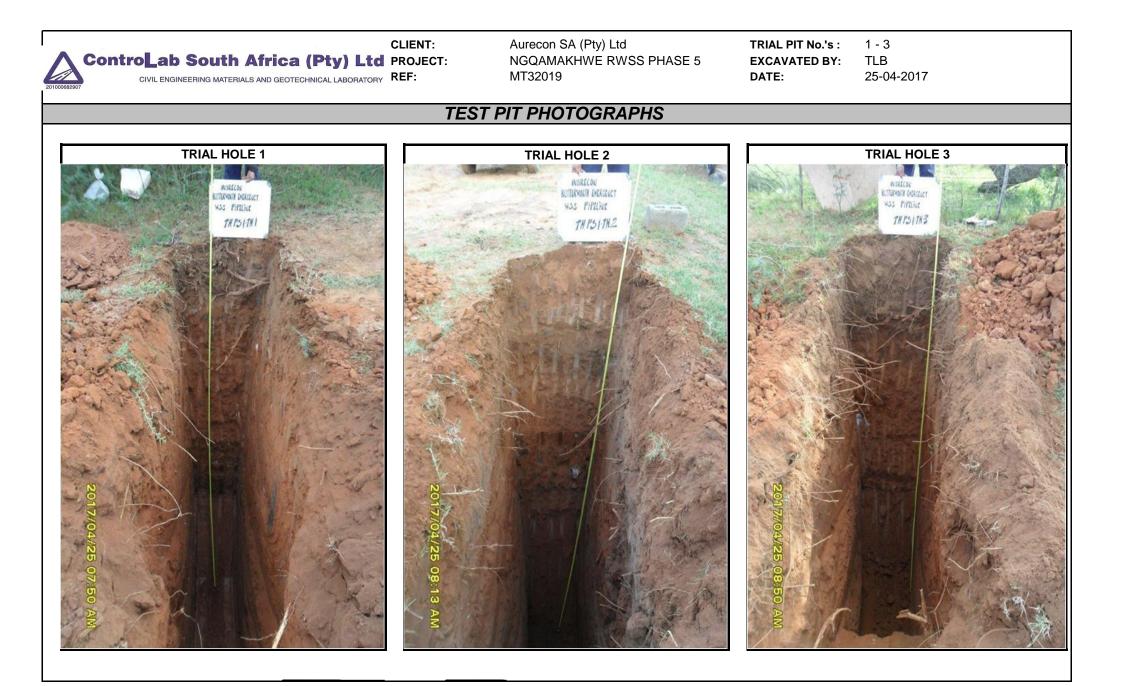


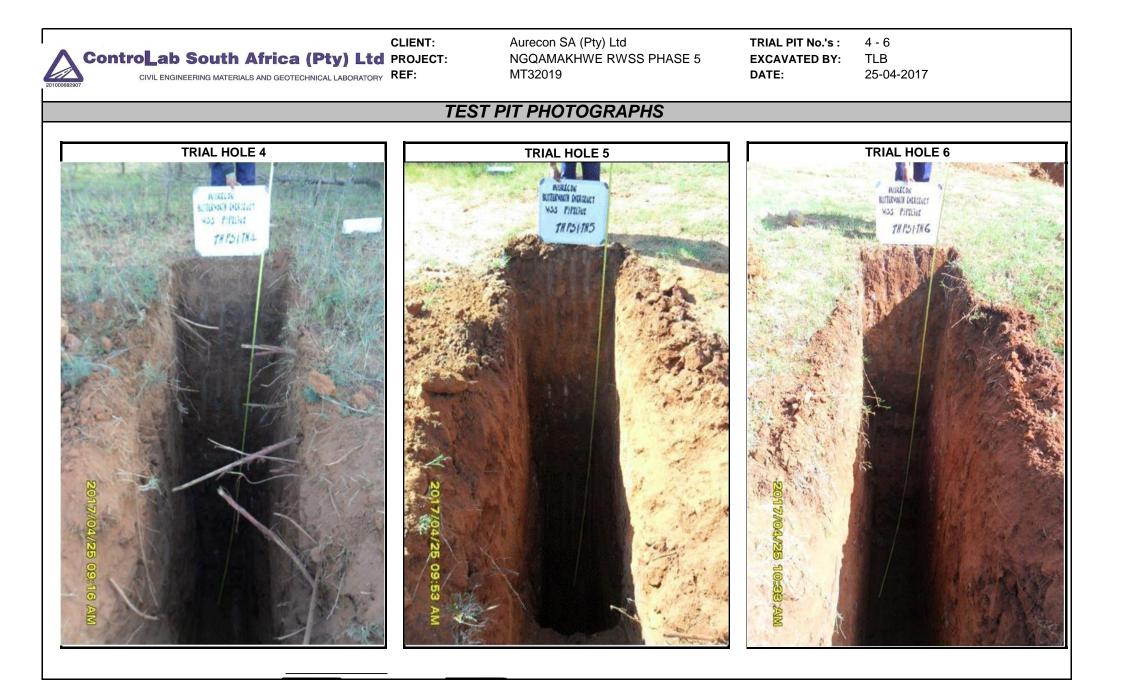
CLIENT:

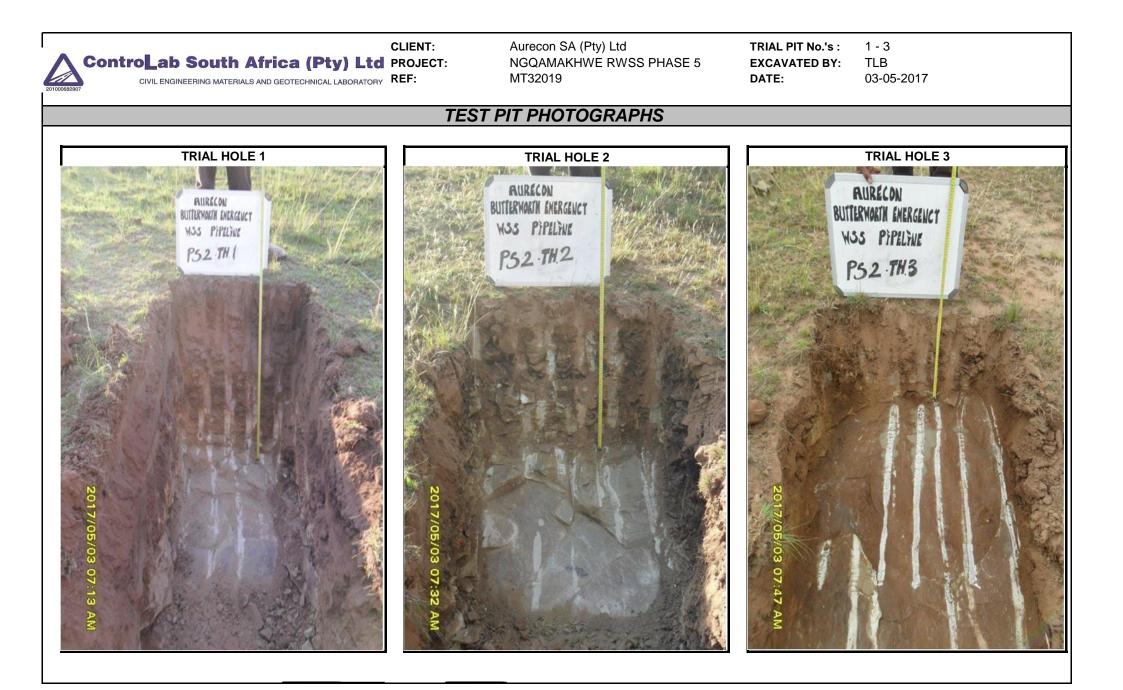

Aurecon SA (Pty) Ltd NGQAMAKHWE RWSS PHASE 5 TRIAL PIT No.'s : EXCAVATED BY: DATE:

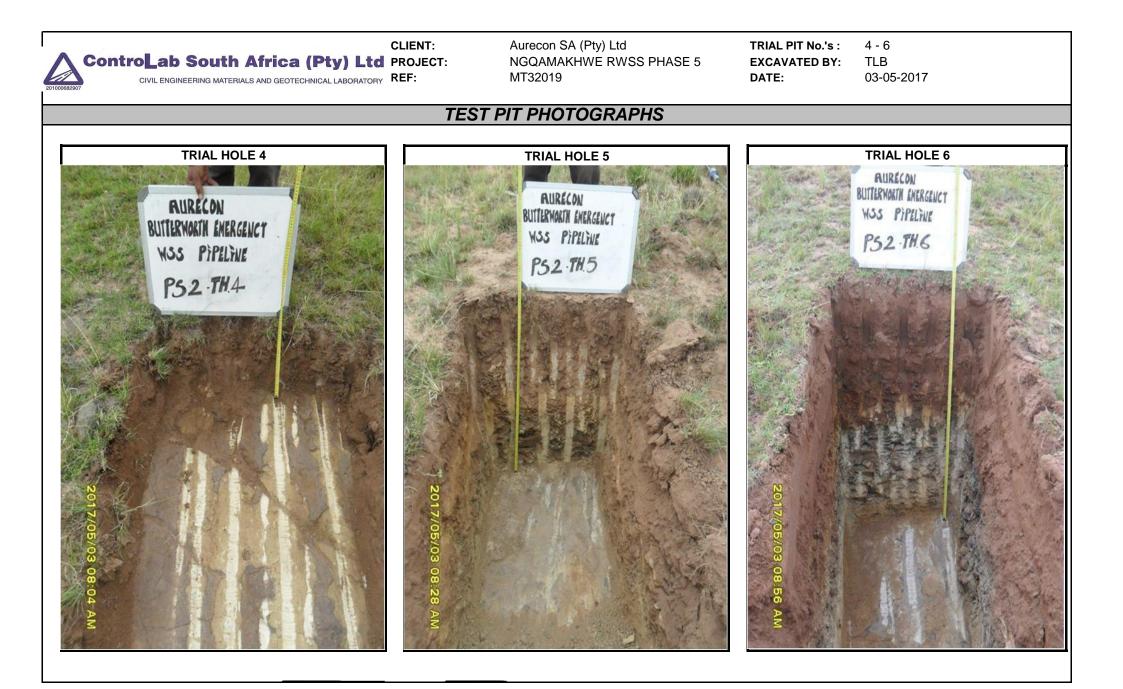

TLB 29-04-2017 & 30-04-2017

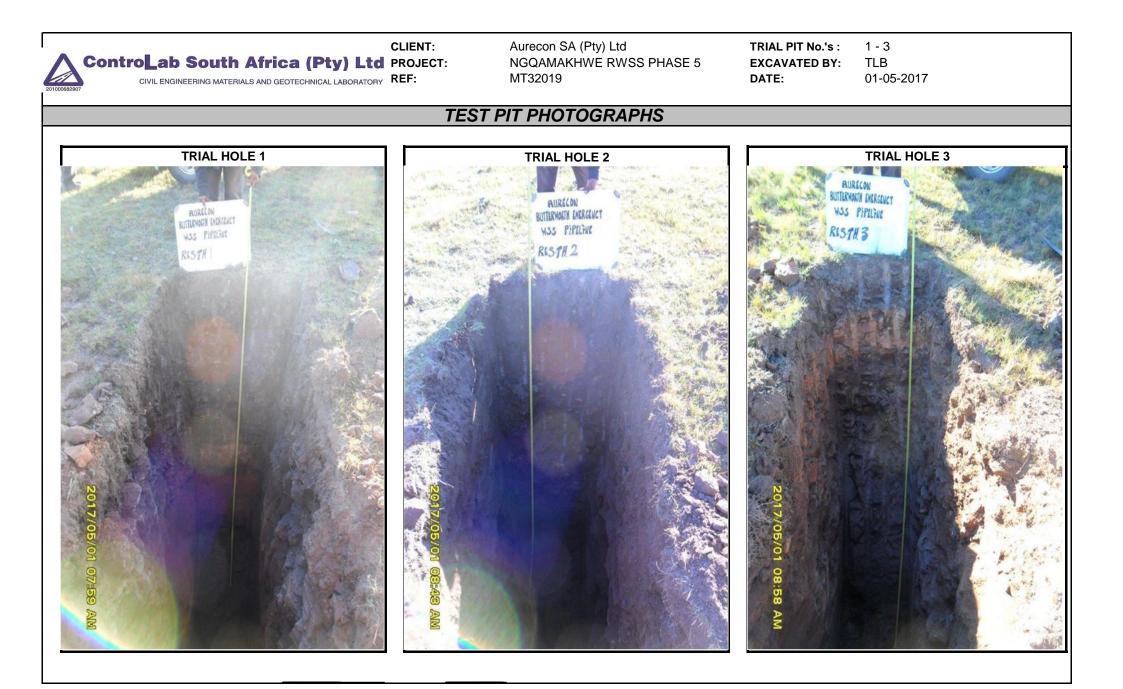
31 - 33

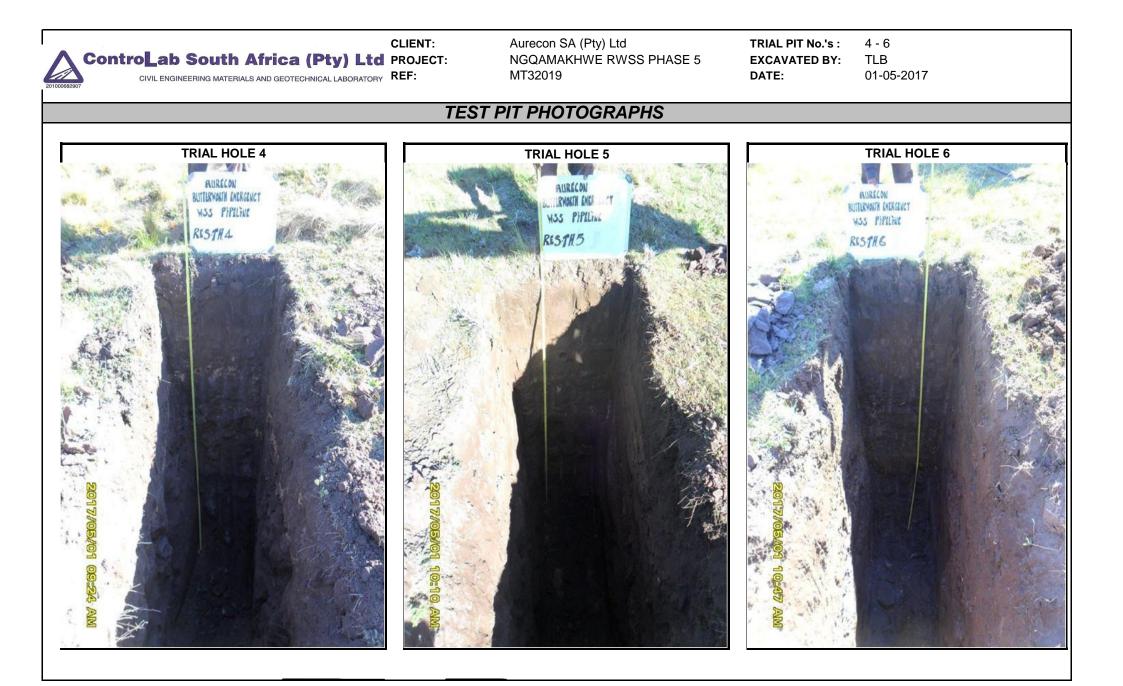



 TRIAL PIT No.'s :
 46


 EXCAVATED BY:
 TLB


 DATE:
 07-05-2017





ControLab South Africa (Pty) Ltd

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (F	•••				HASE 5	
• .	PO Box 19553	} ⊡			ALTERNATI	VE PUMP STA	TION 1
	TECOMA		DAT	E RECEIVED:	2017-06-02		
	5214		D/	ATE TESTED:	2017-06-14		
			DATE	REPORTED:	2017-06-20		
ATT :	Mr D Luhring		TEST I	REPORT NO.:	MT32019		
	, F	OUNDAT	ION INE	DICATOR	REPOR	Γ	
				· · · · · · · · · · · · · · · · · · ·		······································	
SAMPLE NO	D	3896					
POSITION		PS 1					
		TP 1					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
DEPTH m		1.6					
DESCRIPTI	ON	dk R Br					
		sdy st					
	· · · · · · · · · · · · · · · · · · ·	SIEVE ANALYSIS	% PASSING	SIEVES: Method	:TMH1 A1(a) & A	15	
% PASSING	375 mm						
	37.5 mm						
	1 9 mm						
	9.5 mm						
	4.75 mm						
	2.36 mm						
1.1	1.18 mm	100					•
	0.600 mm	99					
	0.425 mm	99					
	0.300 mm	95			1		
	0.150 mm	70			× ·		
	0.075 mm	44.3					
L		HYDROI	METER ANALY	SIS: Method AS	TM D422		<u>ب</u>
	0.06 mm	39					
	0.02 mm	24					
	0.006 mm	19					
	0.002 mm	18			1		
	· · · · · · · · · · · · · · · · · · ·	ATTERBE	RG LIMITS: M	ethod: TMH1 A2	; A3 & A4	· ····	
LIQUID LIM	IT	21					
PLASTICITY	Y INDEX	9					
LINEAR SH	RINKAGE	4					
		PREDICTIO	N OF HEAVE (VAN DER MERW	E METHOD)		
DOUBLE H	YDROMETER %:	5	- <u>.</u>				
PI WHOLE	SAMPLE	8.0					
in since	L EXPANSIVENESS	<u>ا</u>		1			
	sults are pertinent to the sa e carried our according to re			able for erroneque		Technical Signator	
**	g thereof. This report may	=					J Atterbory
Remarks:							

Samples Delivered by Customer

Sampled by Controlab: YES

HYDROMETER ANALYSIS - NON-ACCREDITED TESTS

ControLab South Africa (Pty) Ltd

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

Aurecon SA (Pty) Ltd CLIENT:

PO Box 19553 **TECOMA** 5214

PROJECT: NGQAMAKHWE RWSS: PHASE 5 ALTERNATIVE PUMP STATION SITE DATE RECEIVED: 2017-06-07 DATE TESTED: 2017-06-13 DATE REPORTED: 2017-06-29 TEST REPORT NO.: MT32019

Mr D Luhring ATT:

....

AMPLE NO	4017	4018	4019	4021	4022	4023
POSITION	PS1/TP 1A	PS1/	rp 2A	PS1/TP 3A	PS1/TP 4A	PS1/TP 5A
	1700 - 2100	400 - 1000			1800 - 2200	1100 - 1400
DEPTH mm	It Br	Pale R	It R Br	lt Br	lt Br	lt Br
DESCRIPTION	Ss +	sdy st		Ms +	Ss +	Ss +
······································	sty s		sty s	sty s	sty s	sty s
		% PASSING S		TMH1 A1(a) & A		
% PASSING 75 mm	100		100	1	100	100
37.5 mm	49	-	49	100	60	65
	36		43	70	45	52
9,5 mm	32		37	65	39	44
	29		33	54	34	40
2.36 mm	26	100	30	43	31	37
1.18 mm	25	99	29	28	29	35
0.600 mm	24	97	28	21	27	33
0.425 mm	23	96	27	19	26	32
0.300 mm	23	90	27	18	24	30
0.150 mm	17	72	20	15	15	19
0.075 mm	9.9	39.1	12.8	8.8	8.9	11.2
RADING MODULUS	2.4	0.6	2.3	2.3	2.3	2.2
			SIS: Method AS	TM D422		
0.06 mm	9	10	12	9	8	10
0.02 mm	7	8	9	8	6	8
0.006 mm	6	7	8	6	6	7
0.002 mm	5	6	8	5	5	6
	ATTERI	BERG LIMITS: M	ethod: TMH1 A2	; A3 & A4		
	23	18	25	24	22	24
PLASTICITY INDEX	11	6	12	11	10	9
LINEAR SHRINKAGE	5.5	3.5	6.5	5.5	5.0	4.5
	PREDICTI	ON OF HEAVE (VAN DER MERW			
PI WHOLE SAMPLE	3.0	6.0	3.0	2.0	3.0	3.0
POTENTIAL EXPANSIVENESS	LOW	LOW	LOW	LOW	LOW	LOW
Maximum Dry Dens	ity & Optimum Mols	sture Content - TM	11 - Method A7 / Ca	lifornia Bearing Ra	tio - TMH1 - Method	I A8
Maximum Dry Density (kg/m ³)	2140	1922		2154		
Optimum Moisture Content (%)	8.2	10.8		7.7		
C.B.R. @ 100% COMPACTION	58	30		75		
C.B.R. @ 98 % COMPACTION	43	22		52		<u> </u>
C.B.R. @ 95 % COMPACTION	27	14		30		<u> </u>
C.B.R. @ 93 % COMPACTION	20	10		21		<u>↓</u>
C.B.R. @ 90 % COMPACTION	13	7		12		
SWELL @ 100% COMP. (%)	0.20	0.40		0.70		Ă
T R H 14 CLASSIFICATION	G6	G8		G6	/	<u>′′ </u>
The above test results are pertinent to the s	amples received and te	sted only.			1 (

Samples Delivered by Customer

Sampled by Controlab: YES

∧ ControLab South Africa (Pty) Ltd

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tei: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tei: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Aurecon SA (Pty) Ltd

P O Box 19553 TECOMA 5214 ATT : Mr D Luhring PROJECT: NGQAMAKHWE RWSS - PHASE 5 ALTERNATIVE PUMP STATION 1 DATE.: 2017-06-20

REF NO.: MT32019

Determination of Crumb Test

SAMPLE NO.	POSITION	SOLUTION	CRUMB CONDITION	ТІМЕ	CLASSIFICATION
				10 min	1
3896	PUMPSTATION 1-ALT-TP1 @ 1.6m	0.001N NaOH	AIR DRIED	2 hrs	1
				>16 hrs	11
				,	
			-		÷
					
	· · · · · · · · · · · · · · · · · · ·				
•••	I	····· ···			

GRADE CLASSIFICATION FOR A CRUMB TEST (WALKER, 1997)

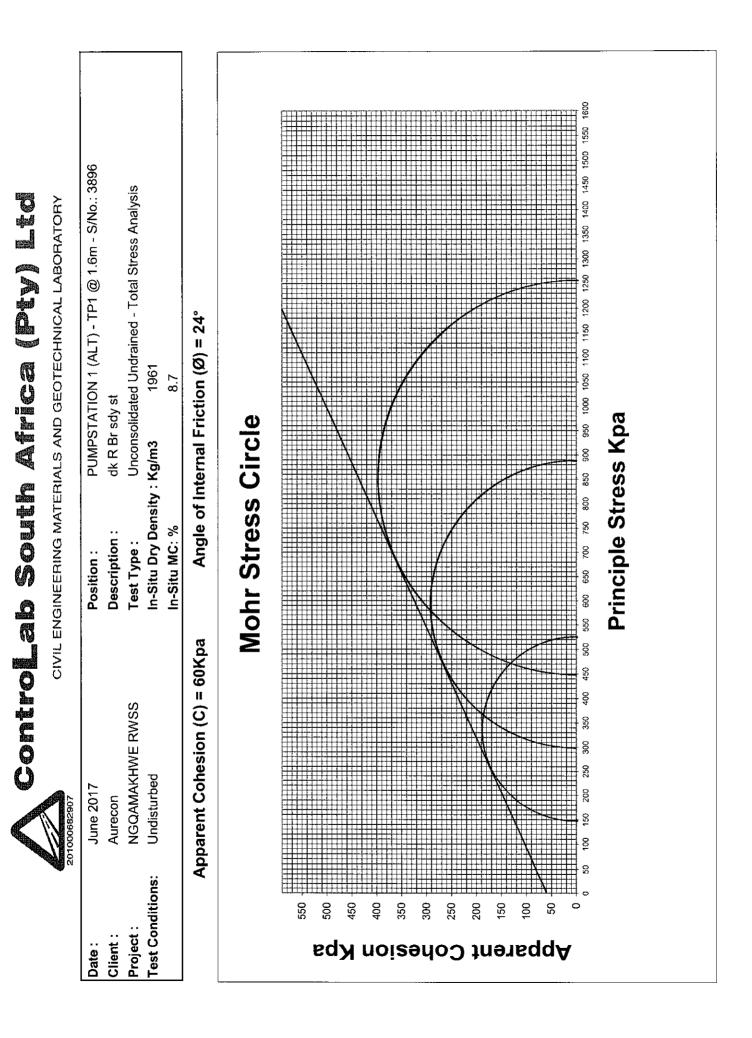
GRADE	REACTION	DESCRIPTION				
1	No Reaction	Crumbs may slake, but no sign of cloudiness by colloids in suspension.				
2	Slight Reaction	Bare hint of cloudiness in water at surface of crumb.				
3	Moderate Reaction	Easily recognisable cloud of collolds in suspension, usually spreading out in thin streaks on bottom of beaker.				
4	Strong Reaction	Colloid cloud covers nearly the whole bottom of the beaker, usually as a thick skin.				

Technical Signator

-

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

201000682907


www.controlab.co.za

ISO/IEC 17025:2005 Accredited Laboratory

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200	
OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia	_

CLIENT:	Aurecon SA										
	P O Box 195	53		ALTERNATIVE PUMP STATION 1							
	TECOMA				B / PP						
	5214				DATE REP	orted: 2017-06-20					
ATT:	Mr D Luhring		<u></u>			RT NO.: MT32019					
		Pll	HOLE 1	EST - /	ASTM D4	221-90 METHOD					
SAMPLE N	10:	3896				DRY DENSITY (Kg/m3):	196 1				
SOURCE:			TION 1 - A			MC %:	8.7				
TEST CON	DITIONS:	Remoulde	ed at In-Sit	u Density	/	DESCRIPTION: dk R Br sd	y st				
		FLO	ow.	/s	Η		IZE R				
TIME	HEAD	PARAM	/IETERS	FLOW ATE ml	FINAL JWRA ml/s	TURBIDITY FROM SIDE	OLE SIZ AFTER				
	HEAD	ml.	sec.		FINAL FLOWRATE ml/s		HOLE SIZE AFTER TTET				
0	55mm	0	60	0.000							
		0	120	0.000							
		0	180	0.000							
		0	240	0.000							
5min_		0	300	0.000							
10min		0	600	0.000	0.000						
				ļ							
	<u> </u>						COLLAP				
AVERAG	E FLOWRATE	0	600	0.000	┨ ┣━-	COMPLETELY CLEAR					
			60	0.000	4						
0	<u>180mm</u>	0	60	0.000	{						
		0	120 180	0.000	{						
		0	240	0.000	1						
5min		0	300	0.000	1						
10min		0	600	0.000	0.000						
1011111											
AVERAG	E FLOWRATE	0	600	0.000		COMPLETELY CLEAR	COLLAP				
0		0	60	0.000	4						
		0	120	0.000	- 1						
		0	180	0.000	4						
		0	240	0.000	-		ł				
5min		0	300	0.000	0.017						
10min		10	600	0.017							
					4						
		<u> </u>			- - -						
AVERAG	SE FLOWRATE	10	600	0.002		MODERATLEY DARK	COLLAR				
				DISPE	RSIVE GR	ADE CLASSIFICATION	Ø1/C				
L						Technical Signato	ry:				

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mithatha, Queenstown, Lusaka - Zambla

CONSOLIDATION TEST

SUMMARY OF READINGS

CLIENT: Aurecon SA (Pty) Ltd **PROJECT : NGQAMAKHWE RWSS : PHASE 5** ALTERNATIVE PUMP STATION SITE PROJECT NO: MT32019 **SAMPLE NO** : 3896 POSITION: PS1(ALT)-TH1 DEPTH: 1.6m

OEDOMETER NO: 2

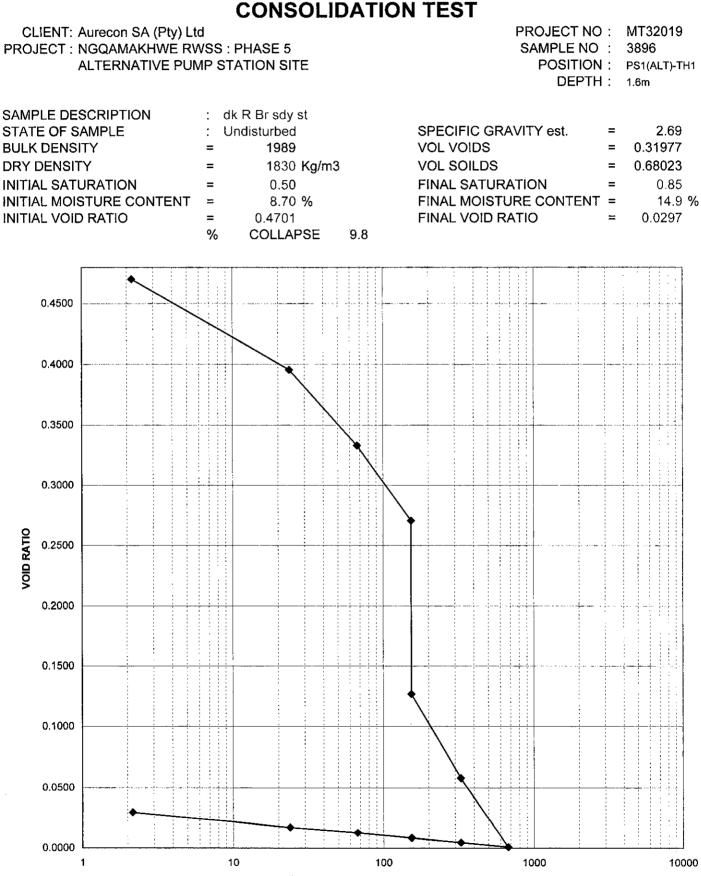
BEAM RATIO: 11

INITIAL DIAL READING = 58.055 mm RING DIAMETER =

79.6 mm

H1 = 20 mm $H_s = 13.6045 \text{ mm}$ Dial Gauge Div = 1

BEAM	COMMENTS	PRESSURE	DIAL	UNCORRECTED	MACHINE	CORRECTED	HEIGHT	VOID
LOAD			READING	DEFLECTION	CORRECTION	DEFLECTION	CHANGE	RATIO
(kg)		(Kpa)	(mm)	(mm)	(mm)	(mm)	(mm)	
0.1		2.17	58.055	0.000	0.000	0	20.000	0.4701
1.1		23.85	57.039	1.016	0.000	-1.016	18.984	0.3954
3.1		67.22	56.189	1.866	0.000	-1.866	18.134	0.3329
7.1		153.96	55.340	2.715	0.000	-2.715	17.285	0.2705
7.1	SAT	153.96	53.383	4.672	0.000	-4.672	15.328	0.1267
15.1		327.43	52.447	5.608	0.000	-5.608	14.392	0.0579
31.1		674.38	51.671	6.384	0.000	-6.384	13.616	0.0008
15.1		327.43	51.722	6.333	0.000	-6.333	13.667	0.0046
7,1		153.96	51.774	6.281	0.000	-6.281	13.719	0.0084
3.1		67.22	51.830	6.225	0.000	-6.225	13.775	0.0125
1.1		23.85	51.890	6.165	0.000	-6.165	13.835	0.0169
0.1		2.17	52.063	5.992	0.000	-5.992	14.008	0.0297
						· · · · · · · · · · · · · · · · · · ·		


% COLLAPSE

9.8

ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY. GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

EFFECTIVE NORMAL STRESS (kPa)

www.controlab.co.za

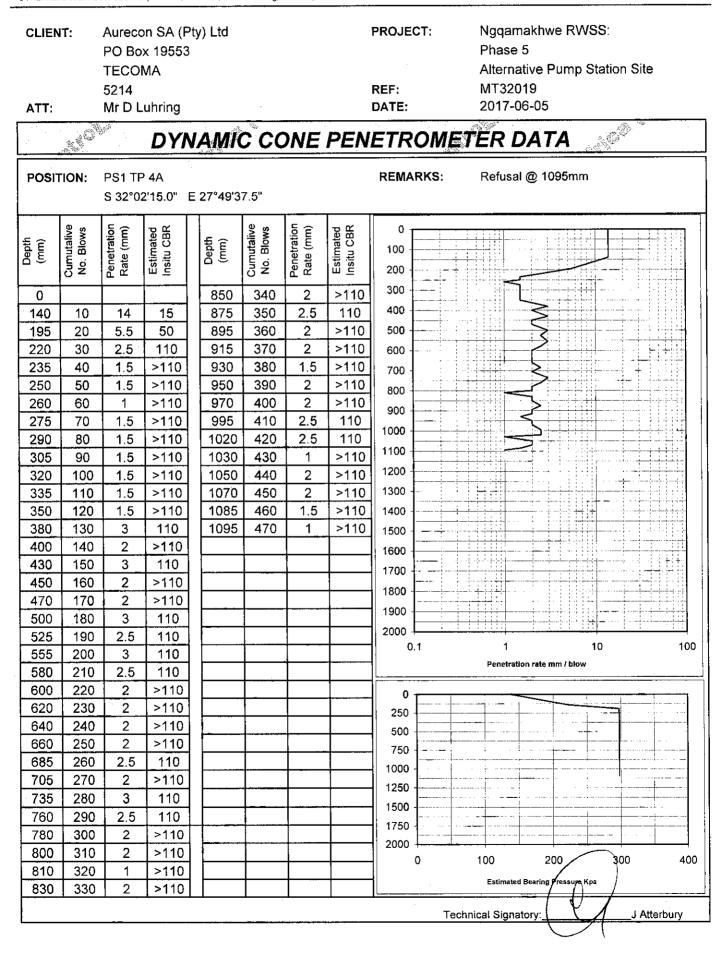
CLIEN	ν Τ:				td				PROJECT: REF: DATE:		Phase Alterna MT320	Ngqamakhwe RWSS: Phase 5 Alternative Pump Station Site MT32019 2017-06-05				
		2 ⁰⁰	DYN	IAI	Mľ	CC	NE	PEN	ETR	OME	TER L	DATA				
POSIT	ION:	PS1 TF S 32°02		Ξ 27°	49'3	3.5"			REMA	RKS:	Refusa	l @ 1310mn		•		
Ucepth Ocepth 0 140	01 Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	12	190 230	Cumutalive No. Blows 220	Penetration Φ Rate (mm)	Estimated 011 Insitu CBR	0 100 200 - 300 - 400 -			×				
<u>170</u> 190	20 30	3	110 >110		260 290	360 370	<u>3</u> 3	110 110	500 -							
220	40	3	110		310	380	2	>110	600 - 700 -			·				
245	50	2.5	110	<u> </u>	010	000			800 -							
270	60	2.5	110						900			Ş	+ + + + + + + + + + + + + + + + + + + +			
300	70	3	110						1000 -			\geq				
325	80	2.5	110						1100 -			\rightarrow				
355	90	3	110						1200 -		·	- 5				
385	100	3	110						1300 -			>				
410 440	110 120	2.5	110 110	-					1400 -							
440	130	3	110						1400 -							
505	140	3.5	93				<u> </u>		1600 -							
535	150	3	110					1	1700 -							
565	160	3	110													
595	170	3	110						1800 -		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · ·		
625	180	3	110						1900 -				· · · · · · · · · · · · · · · · · · ·	······································		
660	190	3.5	93	·				·	2000 - 0	1	1		10	100		
690	200	3	110	\vdash							•	on rate mm / blow				
720	210 220	33	110 110													
790	220	4	75						0							
820	230	3	110	-				+	250				 			
860	250	4	75						500	1						
890	260	3	110	—			-		1000	 						
935	270	4.5	65					<u></u>	1000				2			
960	280	2.5	110						1250	<u> </u> -			· · · · · ·	· pr		
1000	290	4	75						1500							
1050	300	5	55						1750 2000		••••••••••••••••••••••••••••••••••••••					
1090	310	4	75							0	100	200	300	400		
1120	320	3	110						4			Bearing Prespore	1			
1160	330	4	75			L			L				-/			
				····						Тес	hnical Signa	tory:	A_JA	tterbury		

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY: 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

Ngqamakhwe RWSS: CLIENT: Aurecon SA (Pty) Ltd PROJECT: Phase 5 PO Box 19553 Alternative Pump Station Site **TECOMA** MT32019 **REF:** 2017-06-05 DATE: ATT: Mr D Luhring . F . S DYNAMIC CONE PENETROMETER DATA POSITION: PS1 TP 2A **REMARKS:** Refusal @ 400mm S 32°02'14.0" E 27°49'38.8" Penetration Rate (mm) Cumutalive No. Blows Penetration Rate (mm) Estimated Insitu CBR Estimated Insitu CBR Cumutalive No. Blows Depth (mm) Depth (mm) >110 2.5 2.5 >110 **0** 0.1 Penetration rate mm / blow Estimated Be ng Pressure Kpa **Technical Signator** J Atterbury

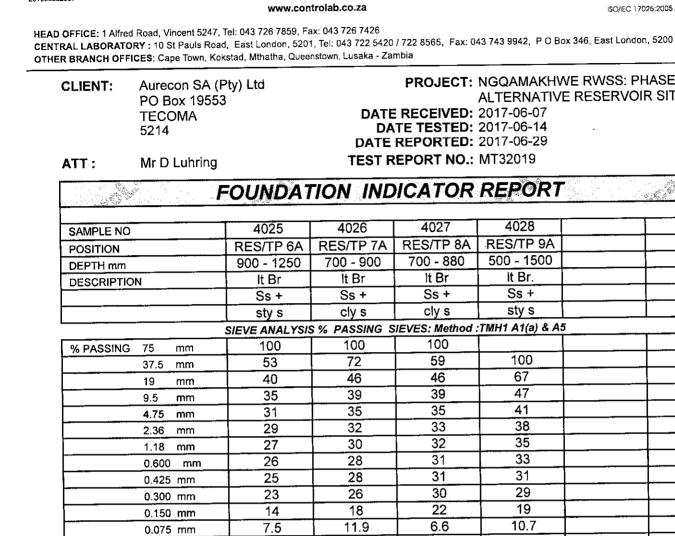

ControLab South Africa (Pty) Ltd civil Engineering Material and Geotechnical Laboratory, Geotechnical and Environmental Services

www.controlab.co.za

CLIEN	IT:				.td				PROJE REF: DATE:	CT:	Ngqamakhwe RWSS: Phase 5 Alternative Pump Station Site MT32019 2017-06-05
	A.	and the second s	DYN	A	Mł	C CC	DNE	PEN	ETR	OM	
POSIT		PS1 TF S 32°02	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	Ϋ́ο,					ARKS:	No Refusal
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth	(mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 - 100 - 200 -		
0				9	55	340	2.5	110	300 -		<u>_</u>
150	10	15	14	9	85	350	3	110	400 -		
200	20	5	55	10	025	360	4	75	50 0 -		
250	30	5	55		050	370	2.5	110	600 -		
275	40	2.5	110		075	380	2.5	110	700 ·		
295	50	2	>110		095	390	2	>110	800		
320	60	2.5	110		115	400	2	>110	900 -		
340	70	2	>110		135	410	2	>110	1000 -		
360	80	2	>110		160	420	2.5	110	1100		
370	90	1	>110		180	430	2	>110	1200		
390	100	2	>110		200	440	2	>110			
410	110	2	>110		230	450	3	110	1300 -		
430	120	2	>110		255	460	2.5	110	1400		<u>++</u>
450 460	130 140	2	>110 >110		285 305	470 480	2	110 >110	1500		
400	140	1.5	>110		330 330	480	2.5	110	1600		
475	160	2	>110		355 355	490 500	2.5	110	1700 -		
510	170	1.5	>110		385 385	510	3	110	180 0		
530	180	2	>110		415	520	3	110	1900		
555	190	2.5	110		435	530	2	>110	2000		
575	200	2.5	>110		455	540	2	>110	0	0.1	1 10 100
605	210	3	110		480	550	2.5	110			Penetration rate mm / blow
625	220	2	>110		495	560	1.5	>110			
650	230	2.5	110		515	570	2	>110	0 250		
675	240	2.5	110		535	580	2	>110]	
705	250	3	110	—					500 750		
730	260	2.5	110				1	1]	
755	270	2.5	110				Ì		1000	1	
790	280	3.5	93				1		1250		
820	290	3	110				1	1	1500		
850	300	3	110				İ		1750	•••••	
880	310	3	110				1		2000	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا 	100 200 300 40
905	320	2.5	110						1	0	
930	330	2.5	110								Estimated Bearing Pressure Kpa
										·····	Technical Signatory: J Atterbury
L.,											a Alterbuly

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


ControLab South Africa (Pty) Ltd civil Engineering Material and Geotechnical Laboratory, geotechnical and environmental services

www.controlab.co.za

CLIEN	IT:		on SA (x 1955	Pty) Ltd 3				PROJECT:	Ngqamakhwe RWSS: Phase 5	
		TECO	MA						Alternative Pump Station Site	
		5214						REF:	MT32019	
ATT:	-02.0	Mr D L	-					DATE:	2017-06-05	
			DY	NAM	IC C	ONE	PEN	IETRON	METER DATA	
POSIT	rion:	PS1 TF S 32°02	9 5A 2 <u>'</u> 11.8"	E 27°49	'38.4"			REMARKS	5: Refusal @ 1060mm	
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200		
0								300		
170 330	10 20	17 16	12	┥┞──	_		<u> </u>	400 500		
530	30	20	9					600		
735	40	20.5	9					700		
920	50	18.5	10	┥┝┈╍				800		
1000	60 70	8	30 45	┥╞──				900		
		<u>ĕ</u>			_		-	1000		
					-			1200		
								1400		
		-		1				1500		,
								1600		
ļ			1	┥┝──				1700		
				-			-	1800		
								1900		
								2000 0.1	1 10 10	
			1	┥┝──	-		<u> </u>	-	Penetration rate mm / blow	
				┥╞──				-		4
				-		-		250	}	
								500		
				┥ <u></u> ┣──		-		750		
	+	-						1000		
				-		· · · · · · · · · · · · · · · · · · ·	<u> </u>	1250		
		_] [1500		
				┥╞	_			2000		
				┥┝──				- 0	50 100 150 200 29	50
				┪┝──	_				Estimated Bearing Pressyre Kpa	
	-	·						and a standard standard standard	Technical Signatory:J Atterbury	
L	·									

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

TO308 ISO/IEC 17025:2005 Accredited Laboratory

PROJECT: NGQAMAKHWE RWSS: PHASE 5 ALTERNATIVE RESERVOIR SITE DATE RECEIVED: 2017-06-07 DATE TESTED: 2017-06-14 DATE REPORTED: 2017-06-29 TEST REPORT NO.: MT32019

FOUNDATION INDICATOR REPORT 4028 Т

SAMPLE NO	4025	4026	4027	4028		
POSITION	RES/TP 6A	RES/TP 7A	RES/TP 8A	RES/TP 9A		
DEPTH mm	900 - 1250	700 - 900	700 - 880	500 - 1500		
DESCRIPTION	lt Br	lt Br	lt Br	it Br.		
	Ss +	Ss +	Ss +	<u>Ss +</u>		
	sty s	cly s	cly s	sty s		
	SIEVE ANALYSI	S % PASSING S	SIEVES: Method	:TMH1 A1(a) & A	5	<u> </u>
% PASSING 75 mm	100	100	100			
37.5 mm	53	72	59	100		
19 mm	40	46	46	67		
9.5 mm	35	39	39	47		
4.75 mm	31	35	35	41		
2.36 mm	29	32	33	38		
1.18 mm	27	30	32	35		
0.600 mm	26	28	31	33		
0.425 mm	25	28	31	31		
0.300 mm	23	26	30	29		
0,150 mm	14	18	22	19	1	
0.075 mm	7.5	11.9	6.6	10.7		
GRADING MODULUS	2.4	2.3	2.3	2.2		
GRADING MODOLOG			SIS: Method AS			<u></u>
0.06 mm	7	11	9	10		
0.02 mm	5	9	14	8		
0.006 mm	4	9	12	7	1	
0.002 mm	3	8	11	7		
0.002 11111			ethod: TMH1 A2	: A3 & A4	<u></u>	e
	18	30	30	24	T	T
	5	14	14	11		
	2.5	6.5	6.0	5.0	1	
LINEAR SHRINKAGE			VAN DER MERW		. L	
PI WHOLE SAMPLE	1.0	4.0	4.0	3.0		
POTENTIAL EXPANSIVENESS		LOW	LOW	LOW		
Maximum Dry Densi			1.000		tio - TMH1 - Method	A8
Maximum Dry Density (kg/m ³)	T	sture content - min	2138		1	
	<u> </u>		7.2			~
Optimum Moisture Content (%)	<u></u>		62	1		
C.B.R. @ 100% COMPACTION			47			
C.B.R. @ 98 % COMPACTION		<u></u>	30			
C.B.R. @ 95 % COMPACTION			21			
C.B.R. @ 93 % COMPACTION		-	13		1	\top
C.B.R. @ 90 % COMPACTION			0.50			+/-
SWELL @ 100% COMP. (%)			G6			± 1
T R H 14 CLASSIFICATION The above test results are pertinent to the sa	amples received and te			l_		
While the tests are carried our according to	recognized standards (Controlab shall not be li	iable for erroneous		Technical Signator	
testing or reporting thereof. This report may	not be reproduced exc	ept in full without prior	consent of Controlab.			y Atterbury
Remarks:						ĺ

Samples Delivered by Customer

Sampled by Controlab: YES

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

Aurecon SA (Pty) Ltd PROJECT: Ngqamakhwe RWSS: CLIENT: PO Box 19553 Phase 5 Alternative Reservoir Site **TECOMA** 5214 REF: MT32019 ATT: Mr D Luhring DATE: 2017-06-05 3 Der ġ.Ś.Ś DYNAMIC CONE PENETROMETER DATA POSITION: RES TP 6A **REMARKS:** Refusal @ 330mm S 32°02'11.1" E 27°49'39.6" Cumutalive No. Blows Cumutalive No. Blows Penetration Rate (mm) Penetration Rate (mm) Estimated Insitu CBR Estimated Insitu CBR 0 Depth (mm) Depth (mm) 100 200 300 0 400 100 10 10 22 20 180 8 30 500 245 30 6.5 40 600 285 40 4 75 700 310 50 2.5 110 800 1.4.4.4 4444 330 60 2 >110 900 11 1000 1100 1200 1300 1400 1500 1600 1700 ÷ 1800 ÷ 1900 2000 0.1 1 10 100 Penetration rate mm / blow 0 250 500 750 1000 1250 1500 1750 2000 100 300 0 200 400 Estimated Bea Technical Signatory: J Atterbury

www.controlab.co.za

CLIEN	IT:		on SA (F ix 19553 MA					PROJECT: REF:	Ngqamakhwe RWSS: Phase 5 Alternative Reservoir Site MT32019
ATT:	5.85	Mr D L	uhring					DATE:	2017-06-05
	, A		DYN	VAMÎ	<u>C C</u>	ONE	PEN	IETROM	ETER DATA
POSI	FION:	RES TI S 32°0		E 27°49'4	0.3"			REMARKS:	Refusal @ 450mm
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200	
0 95	10	9.5	24						
145	20	5	55		+		•	500	
195	30	5	55					600	
240	40	4.5	65			-		700	
285	50	4.5	65		ļ			800	
335	60	5	55					900	
385 420	70 80	5 3.5	55 93					1000	
435	90	1.5	>110					1100	
450	100	1.5	>110			•••		1200	
								1300 -	
		<u> </u>	├ ──-}					1400	
								1500	
1								1600	
					<u> </u>			1700	
								1800	
								1900	
								2000 0.1	1 10 100
							-		Penetration rate mm / blow
								0	
								250	
ļ	<u> </u>				<u> </u>			500	
	┨────							750	
ļ			+				$+ \cdots$	- 1000	
		+			+		+	1250	
<u> </u>								1500	
		v							
								- 2000 1 0	100 200 300 400
· · · · ·		<u> </u>							Estimated Bearing Pressure Kpa
	L	1	┶─────			<u> </u>	J	 Te	echnical Signatory:
									or accounty

www.controlab.co.za

CLIEN ATT:	1T:							PROJECT: REF: DATE:	Ngqamakhwe RWSS: Phase 5 Alternative Reservoir Site MT32019 2017-06-05
			DYN	IAMÎ	c co	ONE	PEN	IETROM	TER DATA
POSIT	TION:	RES TR S 32°02	P 8A 2'10.4" E	∃ 27°49'4	0.9"			REMARKS:	Refusal @ 640mm
O Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Currutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200 300	
60 115 155 210	10 20 30 40	6 5.5 4 5.5	45 50 75 50		· · · · · · · · · · · · · · · · · · ·			400 500 600 700	
250 280 320 360	50 60 70 80	4 3 4 4	75 110 75 75					800 900 1000 1100	
395 430 465 485	90 100 110 120	3.5 3.5 3.5 2	93 93 93 >110					1200 1300 1400	
530 570 615 640	130 140 150 160	4.5 4 4.5 2.5	65 75 65 110					1500	
	· · · · · ·							1900 2000 0.1	1 10 100
								0	Penetration rate mm / blow
								500 750 1000 1250	
								1500 1750 2000 0	100 202 300 400
					<u> </u>				Estimated Bearing Pressure Kpa
L		<u></u>						Te	chnical Signatory: J Atterbury

www.controlab.co.za

CLIEN	IT:		on SA (F x 19553) Ltd				PROJE	CT:		Ngqar Phase		we RW	/SS:			
		TECO		-								Altern		Reser	voir S	ite		
		5214							REF:			MT32						
ATT:		Mr D L	uhring						DATE:			2017-						
			DYI	V	AMI	<u>c c</u> (ONE	PEN	IETR	OM	E	ER I	DAT	ΓA		<u></u>	· .	
POSIT	TION:	RES T S 32°0	P 9A 2'11.9"	E	27°49'4	0.1"			REMA	RKS:		Refusa	al @ 3	20 m m				
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR		Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 - 100 - 200 - 200		÷ ÷		•					
0	10	- 24	-						300 - 400 -						•			
310 320	10 20	<u>31</u> 1	5 >110						500									
	20		- 110				┥╌╧┈┈	+	600 -			······································	····				+	τ.
									700 -									
						İ			800 -									
									900 -									
<u> </u>									1000 -									4
									1100 -				-+					-
									1200 -									
		-			···· •				1300 -						+ + 		i i i i i	- - -
					-				1400 -								+++++++++++++++++++++++++++++++++++++++	
						<u> </u>			1500 - 1600 -									- -
									1700									-
		ļ							1800						· · · · ·		<u> </u>	
ļ		·				<u> </u>			1900 -	;						·		÷
·	ļ								2000		_							
								·	- o	0.1		1			10		1	100
												Penetra	tion rate	mm / blow	·			
									0	T	1			1	1	<u> </u>		7
						ļ			250								1	
	<u>.</u>								500									-
		<u> </u>							750				· · · · · · · · · · · · · · · · · · ·					-
				1				-	- 1000	1								
									1250						• • • • • • • • • • • • • • • • • • •	†		
									1750			-				+	1	-
				-			1		2000				<u>+</u>	+	<u> </u>			-
			+						1	0		100	2	200	3	00	4	400
	<u> </u>		+	1	 		1	-		-		Estimate	d Bearing	Pressure I	<pa< td=""><td></td><td></td><td></td></pa<>			
	•		-±		•	•						cal Signa	aton	U	1	LÁI	terbury	 ,
L									<u> </u>		GUIIII	a oyn		$\overline{\mathcal{I}}$	(

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

CLIENT : Aurecon SA (Pty) Ltd

OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

ISO/IEC 17025:2005 Accredited Laboratory

PROJECT: NGQAMAKHWE RWSS: PHASE 5

www.controlab.co.za

CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200

	PO Box 19553			TE RECEIVED:			
	TECOMA						
	5214			E REPORTED:			
ATT:	Mr D Luhring			REPORT NO.:			
		MATE	RIALS T	EST RE	<u> PORT</u>		
SAMPLE	NO:	3380	3381	3384	3387	3389	3390
POSITIO	N / CHAINAGE	AR TP 1	AR TP 2	AR TP 4	AR TP 6	AR TP 9	AR TP
				ALTERNAT	IVE ROUTE		·····
DEPTH m	nm	0 - 500	0 - 200	0 - 260	0 - 250	0 - 300	0 - 500
DESCRIP	PTION	dk R Br	dk R Br	dk R Br	dk R Br	dk R Br	dk R B
		sdy st	sty s	sty s	sdy st	sdy st	sdy st
		Sieve	Analysis (Wet Prepa	ration) TMH1 - Meth	nod A1 (a)		L
% PASSIN	IG 75 mm						
	63 mm						
	53 mm					<u> </u>	
	37.5 mm						
<u> </u>	26.5 mm						
	19 mm						100
	13.2 mm	100	1	100	100		99
	4.75 mm	99	100	98	99	100	97
	2.00 mm	98	98	97	98	98	94
	0.425 mm	97	96	95	95	95	91
		33.0	28.8	30.4	26.6	24.7	43.7
L	0.075 mm		· · · · · · · · · · · · · · · · · · ·	is - TMH1 - Method	A5		
COURSI	E SAND (%)	1	2	2	3	3	
FINE SA		65	69	67	70	72	
	CLAY (%)	34	29	31	27	25	46
	IG MODULUS	0.72	0.77	0.78	0.80	0.82	0.71
			Atterberg Limits - TN	IH1 - Methods A2, A	A3, A4		
	LIMIT (%)	CBD	CBD	CBD	CBD	CBD	CBC
	CITY INDEX (%)	SP	SP	NP	NP	NP	SP
	SHRINKAGE (%)	1.0	1.0	0.0	0.0	0.0	1.0
	Maximum Dry Dens	sity & Optimum M	oisture Content - TM	H1 - Method A7 / C:	alifornia Bearing Ratio	- TMH1 - Method	A8
COMPA	CTIBILITY %	0.24	0.21	0.14	0.16	0.14	0.18
	m Moisture Content (%)						
	@ 100% COMPACTION						
	@ 98 % COMPACTION						
	95 % COMPACTION						
	@ 93 % COMPACTION						+
C.B.R. (@ 90 % COMPACTION					1	
	. @ 100% COMP. (%)					<u> </u>	
	4 CLASSIFICATION	L					/ ()
Controlab	test results are pertinent to the sa shall not be liable for erroneous te Controlab.	amples tested only. W sting or reporting the	/hile the tests are carried reof. This report may not	out according to recognize reproduced except i	nized standards, in full withour prior	Technical Signato	J Atterbury
Remarks:	······································]					\checkmark
	elivered by Customer	1				1	

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY. GEOTECHNICAL AND ENVIRONMENTAL SERVICES

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

C.B.R. @ 95 % COMPACTION C.B.R. @ 93 % COMPACTION C.B.R. @ 90 % COMPACTION SWELL @ 100% COMP. (%) T R H 14 CLASSIFICATION

consent of Controlab.

Sampled by Controlab

Sample Delivered by Customer

х

Remarks:

ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

PROJECT: NGQAMAKHWE RWSS: PHASE 5 CLIENT : Aurecon SA (Pty) Ltd DATE RECEIVED: 2017-04-30 PO Box 19553 DATE TESTED: 2017-05-31 **TECOMA DATE REPORTED: 2017-06-01** 5214 TEST REPORT NO .: MT32019 Mr D Luhring ATT: MATERIALS TEST REPORT 30. 3393 3395 3396 3398 3392 SAMPLE NO: AR TP 13 **AR TP 11 AR TP 12** POSITION / CHAINAGE ALTERNATIVE ROUTE 0 - 480 500 - 800 0 - 320 320 - 1270 0 - 500 DEPTH mm dk R Br dk Br dk R dk Br dk Br DESCRIPTION sdy st cly s sty s sdv st sdy st Sieve Analysis (Wet Preparation) TMH1 - Method A1 (a) % PASSING 75 mm 63 mm 53 mm 37.5 mm 26.5 mm 100 100 19 mm 100 100 98 99 13.2 mm 100 97 99 97 97 4.75 mm 97 95 99 96 94 2.00 mm 94 93 97 93 91 0.425 mm 32.0 60.1 43.7 48.4 33.5 0.075 mm Soil Mortar Analysis - TMH1 - Method A5 2 2 3 4 2 COURSE SAND (%) 37 65 46 63 50 FINE SAND (%) 35 61 33 50 46 SILT / CLAY (%) 0.78 0.44 0.71 0.62 0.79 GRADING MODULUS Atterberg Limits - TMH1 - Methods A2, A3, A4 CBD 33 CBD CBD 20 LIQUID LIMIT (%) NP SP NP 13 7 PLASTICITY INDEX (%) 7.0 0.0 0.0 3.5 1.0 LINEAR SHRINKAGE (%) Maximum Dry Density & Optimum Moisture Content - TMH1 - Method A7 / California Bearing Ratio - TMH1 - Method A8 0.16 0.16 0.18 0.16 0.14 COMPACTIBILITY % **Optimum Moisture Content (%)** C.B.R. @ 100% COMPACTION C.B.R. @ 98 % COMPACTION

The above test results are pertinent to the samples tested only. While the tests are carried out according to recognized standards,

Controlab shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full withour prior

OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200

Û

J Atterbury

Technical Signato

Page 2 of 4

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES Testing Laboratory TOJAGE 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Aurecon SA (Pty) Ltd PO Box 19553 TECOMA 5214

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-25 DATE REPORTED: 2017-06-01 TEST REPORT NO.: MT 32019

ATT: Mr D Luhring

م المراجع المراجع المراجع FOUNDATION INDICATOR REPORT 3386 3385 3382 3383 SAMPLE NO AR TP 4 AR TP 5 AR TP 2 AR TP 3 POSITION ALTERNATIVE ROUTE 700 - 1100 180 - 750 500 - 1000 300 - 1800 DEPTH mm It R Br dk Y O Pale R dk Y O DESCRIPTION Ss + Ss + Ss + Ms + sty s sty s sdy st cly s SIEVE ANALYSIS % PASSING SIEVES: Method :TMH1 A1(a) & A5 100 % PASSING 75 mm 100 100 92 37.5 mm 91 100 83 68 19 mm 64 78 66 53 9.5 mт 53 38 38 67 4.75 mm 41 61 28 30 2.36 mm 33 24 58 26 1 18 mm 29 56 24 23 0.600 mm 56 28 22 23 0.425 mm 55 26 23 21 0.300 mm 19 20 16 49 0.150 mm 10.9 8.6 30.0 12.9 0.075 mm HYDROMETER ANALYSIS: Method ASTM D422 25 9 11 7 0.06 mm 5 6 3 13 0.02 mm 10 4 5 2 0.006 mm 3 10 2 4 0.002 mm ATTERBERG LIMITS: Method: TMH1 A2 ; A3 & A4 24 31 25 21 LIQUID LIMIT 8 7 6 12 PLASTICITY INDEX 4.5 3.5 2.5 5.5LINEAR SHRINKAGE PREDICTION OF HEAVE (VAN DER MERWE METHOD) 2.0 5.0 1.0 3.0 PI WHOLE SAMPLE LOW LOW LOW LOW POTENTIAL EXPANSIVENESS The above test results are pertinent to the samples received and tested only Technical Signator While the tests are carried our according to recognized standards Controlab shall not be liable for erroneous .I Att бury testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab. Remarks:

Samples Delivered by Customer

Sampled by Controlab: YES

HYDROMETER ANALYSIS - NON-ACCREDITED TESTS

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

To the second se

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214
ΔΤΤ・	Mr. D. Lubring

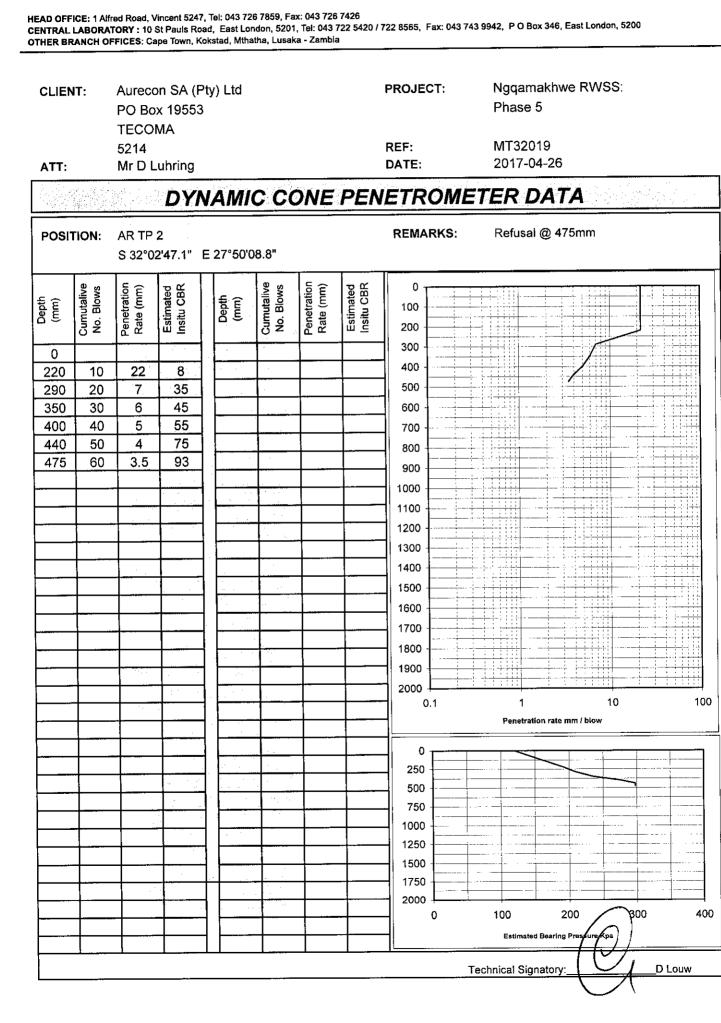
PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-25 DATE REPORTED: 2017-06-01 TEST REPORT NO.: MT 32019

ATT : Mr D Luhring

			DICATOR			
SAMPLE NO	3388	3391	3394	3397	3399	
POSITION	AR TP 6	AR TP 10	AR TP 11	AR TP 12	AR TP 13	
·····		ALT	ERNATIVE RC	· · · · · · · · · · · · · · · · · · ·		
DEPTH mm	1000 - 1300	700 - 740	1270 - 1400	1400 - 3000	930 - 1160	<u> </u>
DESCRIPTION	lt R Br	lt Br	dk Br	dk Br	lt Br	<u> </u>
	Ss +	Ss	Sh / Ss +	cly s	Ss +	
	sty s		cly s		sty s	
	SIEVE ANALYSIS	% PASSING S	IEVES: Method :	TMH1 A1(a) & A	5	-
% PASSING 75 mm		100	100		100	··
37.5 mm	100	96	86		95	
19 mm	84	61	69		84	
9.5 mm	73	48	56		72	
4.75 mm	61	39	49		62	······
2.36 mm	54	35	47	100	55	·
1.18 mm	50	32	46	99	52	
0.600 mm	47	31	45	99	50	
0.425 mm	45	30	42	99	49	
0.300 mm	42	28	36	95	46	
0.150 mm	24	18	18	68	31	
0.075 mm	12.0	10.8	12.8	46.7	14.9	
·	HYDRO	METER ANALYS	SIS: Method AST			
0.06 mm	10	10	12	42	13	
0.02 mm	5	7	13	32	8	
0.006 mm	3	4	12	26	5	
0.002 mm	2	3	11	23	4	
······································		ERG LIMITS: Met	hod: TMH1 A2 ; /	43 & A4		
	CBD	CBD	27	33	CBD	
PLASTICITY INDEX	NP	SP	12	13	SP	
LINEAR SHRINKAGE	0.0	1.5	6.5	6.5	1.0	
			AN DER MERWE	METHOD)		
PI WHOLE SAMPLE	0.0	0.0	5.0	13.0	0.0	\angle
	LOW	LOW	LOW	MED	LOW	
te above test results are pertinent to the samp hile the tests are carried our according to rec sting or reporting thereof. This report may no	ognized standards Cont	rolab shall not be liable	e for erroneous sent of Controlab.		Technical Signatory:	J-Atte

Sampled by Controlab: YES

HYDROMETER ANALYSIS - NON-ACCREDITED TESTS


CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

POSITION: AR.TP 1 REMARKS: Refusal @ 290mm 90	CLIER	4 1.		ын ЗА (F эх 19553 МА					REF:	Phase 5 MT32019		
POSITION: AR TP 1 S 22'02'42.3" E 27'5'04.7" REMARKS: Refusal @ 290mm S 22'02'42.3" E 27'5'04.7" REMARKS: Refusal @ 290mm REMARKS: Refusal @ 290mm	ATT:		Mr D L	uhring					DATE:	2017-04-26		·····
S 32°0242.9° E 27°5004.7°				DYN	AMIC	CC	ONE	PEN	IETRO	METER DAT	A	
0 10 20 9 25 200 10 20 9 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 100 1 1 1 1 10 100 100 1 1 1 1 10 100 100 1 1 1 10 100 100 100 1 1 10 10 100 100 100 100 1 1 10 100 <td>POSI</td> <td>TION:</td> <td></td> <td></td> <td>E 27°50'04</td> <td>.7"</td> <td>Ţ</td> <td>T</td> <td>REMARKS</td> <td>S: Refusal @ 29</td> <td>90mm</td> <td></td>	POSI	TION:			E 27°50'04	.7"	Ţ	T	REMARKS	S: Refusal @ 29	90mm	
0 10 20 9 25 200 10 20 9 25 200 10 20 9 25 200 10 20 9 25 200 10 20 9 25 200 100 100 100 100 200 200 1000 100 100 200 200 200 1000 100 200 200 1000 100 100 200 200 100 100 100 200 200 200 100 100 200 200 200 200 200		Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutative No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	100			
290 20 9 25 200 20 9 25 200 20 9 25 200 20 9 25 200 20 9 25 200 20 900 700 200 200 900 1000 200 1000 1100 200 1000 1000 200 1000 1000 200 0.1 1 200 0.1 100 200 200 100 200 200 200 200 200 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200		10	20	a .			<u> </u>					
700 800 900 900 1000 1000 1100 1200 1100 1300 1100 1300 1100 1300 1100 1300 1100 1300 1100 1300 1100 1300 1100 100<		-							500			
800 900 900 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 100 100 <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>—] </td> <td></td> <td></td> <td></td>									—]			
900 900 900 100						• • •						
1000 1000 1000 1100 1200 1200 1300 1300 1400 1500 1400 1500 1500 1600 1600 1600 1000 1000 <t< td=""><td></td><td>ļ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		ļ										
1200 1200 1300 1300 1400 1500 1600 1600 1700 1800 1800 1800 1900 100 2000 100 2000 100 1900 100 1000 100 </td <td></td> <td></td> <td>- </td> <td></td> <td></td> <td>·····</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-			·····						
1300 1300 1400 1400 1500 1500 1500 1600 1600 1700 1800 1900 1900 2000 1900 2000 1900 2000 1900 2000 1900 2000 1900 2000 1900 2000 1900 2000 1900 250 1900 100 1900 250 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100 1900 100									3			
1400 1500 1500 1600 1700 1800 1900 11100 11100 11100 111000 1110000 <td></td> <td><u> </u></td> <td></td> <td></td> <td>· · ·</td> <td></td> <td></td> <td></td> <td></td> <td> <u></u></td> <td></td> <td></td>		<u> </u>			· · ·					<u></u>		
Image: Construction of the second		╉────										
Image: Constraint of the constraint of the									1500			
1/00 1/00 1800 1900 2000 0.1 1 10 100 2000 0.1 1 10 100 2000 250 0 250 0 1 100 100 250 1 10 100												
1900 2000 0.1 1000 2000 0.1 1000 2000 0.1 1000 2000 0.1 1000 2000						14 J.						
2000 1 10 100 0.1 1 10 100 250 250 250 250 500 750 250 250 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000												
Penetration rate mm / blow O Penetration rate mm / blow O 250 Store Store O 250 Store Store O 250 Store 300 0 Store 300 300 300 Store 300 300 300 300 Store 300 300 300 300 300			-									100
250 500 750 1000 1250 1500 1500 1500 1750 2000 0 50 100 Estimated Bearing Pressure Kea		-							_			100
250 500 750 1000 1250 1500 1500 1500 1750 2000 0 50 100 Estimated Bearing Pressure Kea				_								
750 1000 1250 1500 1500 1750 1500 1750 1500 1750 1500 1750												
1000 1250 1500 1750 2000 0 50 100 Estimated Bearing Pressure Kna V	ļ			· · · · ·				_	- II			
1250 1500 1750 2000 0 50 100 160 200 Estimated Bearing Pressure Kpa											······································	·
1500 1750 2000 0 50 100 Estimated Bearing Pressure Kna		-										
2000 2000 0 50 100 150 200 Estimated Bearing Pressure Kpa												
0 50 100 160 200 Estimated Bearing Pressure Kpa								_		· · · · · · · · · · · · · · · ·		
								_	11	50 1	00 76	0 200
			-		┤┝──┤				-	Estimated Bearing	Pressure Kpa	
			•							Technical Signatory:	C	D Louw

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

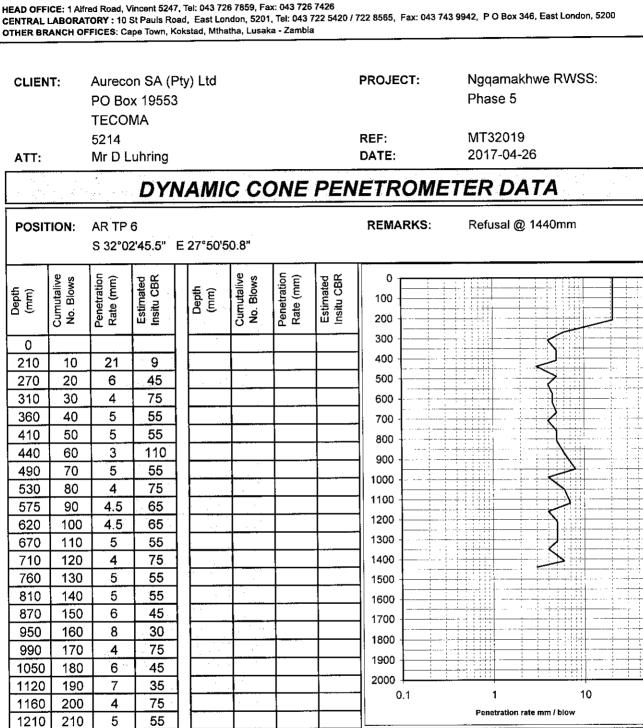
CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

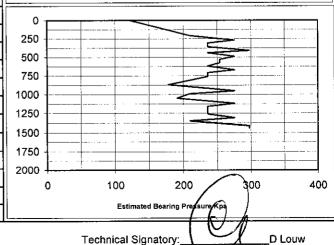
CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200

www.controlab.co.za

Nggamakhwe RWSS: PROJECT: Aurecon SA (Pty) Ltd CLIENT: Phase 5 PO Box 19553 **TECOMA** MT32019 REF: 5214 2017-04-26 DATE: Mr D Luhring ATT: DYNAMIC CONE PENETROMETER DATA Refusal @ 520mm **REMARKS:** POSITION: AR TP 4 S 32°02'57.5" E 27°50'27.3" Cumutalive No. Blows Cumutalive No. Blows Penetration Rate (mm) Penetration Rate (mm) Estimated Insitu CBR Estimated Insitu CBR 0 Depth (mm) Depth (mm) 100 200 300 0 400 270 10 27 7 500 340 20 Ż 35 75 4 380 30 600 4 40 75 420 700 3 450 50 110 800 <u> 144</u> 4 75 490 60 900 520 70 3 110 1000 ÷÷++ 1100 1200 -----÷++-1300 -----1400 1 1 1 1 1500 4.4.4.4 1600 Ļ. $\dot{\cdot}$ 1700 1800 1900 4. 2000 10 0.1 1 Penetration rate mm / blow 0 250 500 750 1000 1250 1500 1750 2000 100 200 300 0 Estimated Bearing P <u>(</u> **Technical Signatory** D Louw

100

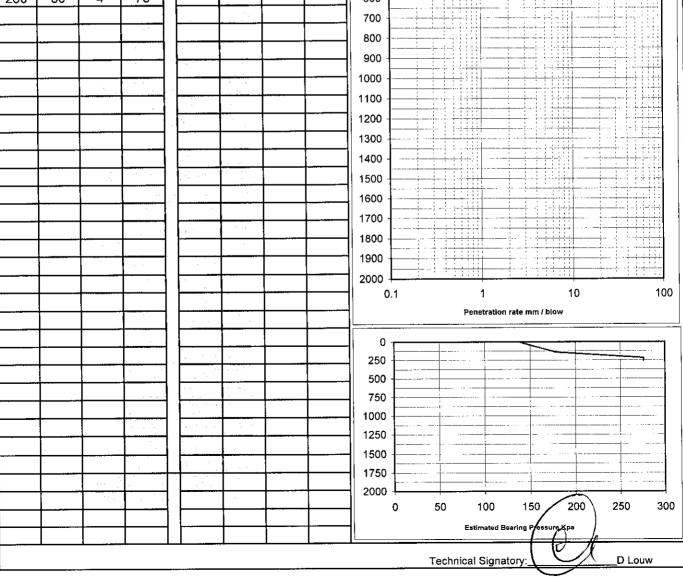

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


						ntrolab.co								
CENTRAL	LABORAT	ORY : 10	/incent 5247 St Pauls Ro ape Town, K	ad, East L	ondon, 520	1, Tel: 043	722 5420 /	722 8565, Fa	ax: 043 743	9942, P O Bo	x 346, East Londo	on, 5200) 	
CLIEN	NT:	PO Bo	on SA (F x 19553					PROJEC	:Т:	Ngqam Phase	akhwe RWS 5	S:		
ATT:		TECO 5214 Mr D կ	uhring					REF: DATE:		MT320 2017-0				
			DYI	NAM	IC C	ONE	PEN	IETRO	OME	TER D	ATA		· ·	
POSI	TION:	AR TP S 32°0	5 2'50.7"	E 27°50	'38.3"			REMAF	RKS:	Refusal	@ 760mm			
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200						
0								- 300 -			$- \lambda$			
110	10	11	20					400			\		·	
160	20	5	55					500				<u> </u>		
190	30	3	110					600 -		<u> </u>	/			
230	40	4	75				_	700						
270	50	4	75					800 -						_
330	60	6	45		_		_	900						-
390	70	6	45		<u> </u>			1000 -				i		
480	80	9	25					1100 -						· · · · · · · · · · · ·
570	90	9	25	· · ·		_	_	1200 -					<u> </u>	
640	100	7	35		<u> </u>			1300 -						
690	110	5	55 75	┥┠───	-	-	<u></u>	1400						
730	120 130	4	110	- ·				1500						
1.00	130	-		┥┟──								i		
	+		-	┥┝	····			1600					<u>+</u> ;	
	+		-	┥ ┝━━━				1700						
	+	+		┥┠──				- 1800 +				1	++-+	
				1				1900				1	+	
					·** · · · · ·			2000 +	1	 		<u>'</u> 10	<u></u>	1
[÷ .							•	-	on rate mm / blow			
			_								·····			
				┥┝━━				0 -						
	+			┥┝──				250 -	 			· · · · · · · · · · · · · · · · · · ·		†

-----500 750 1000 1250 1500 1750 2000 *β*00 400 100 200 0 Estimated Bearing P <pa D Louw Technical Signatory

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za



CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

CENTRAL	LABORA	TORY : 10	St Pauls R	7, Tel: 043 72 oad, East Lo Kokstad, Mtha	ndon, 520	1, Tel: 043	722 5420	722 8565, Fax: 043 7	243 9942, P O Box 3	346, East London, 52	200
CLIEN	IT:		x 1955	Pty) Ltd 3				PROJECT:	Ngqamal Phase 5	khwe RWSS:	
ATT:		5214	.uhring					REF: DATE:	MT32019 2017-04-		
			DY	NAMI	C C	ONE	PEN	IETROM	ETER D	4 <i>TA</i>	
POSIT	FION:	AR TP S 32°0		E 27°51'(03.7"			REMARKS:	Refusal @) 260mm	
Depth (mm)	Cumutalive No. Błows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0			
0								300			
140	10	14	15					400			
220	20	8	30					500			
260	30	4	75		_	<u> </u>	<u> </u>	600			
		<u> </u>		┥┝───	· · ·	<u> </u>		700	· · · · · · · · · · · · · · · · · · ·		
ļ	 		ļ	┨				800			
			<u> </u>	┥┝┈┈				900			

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

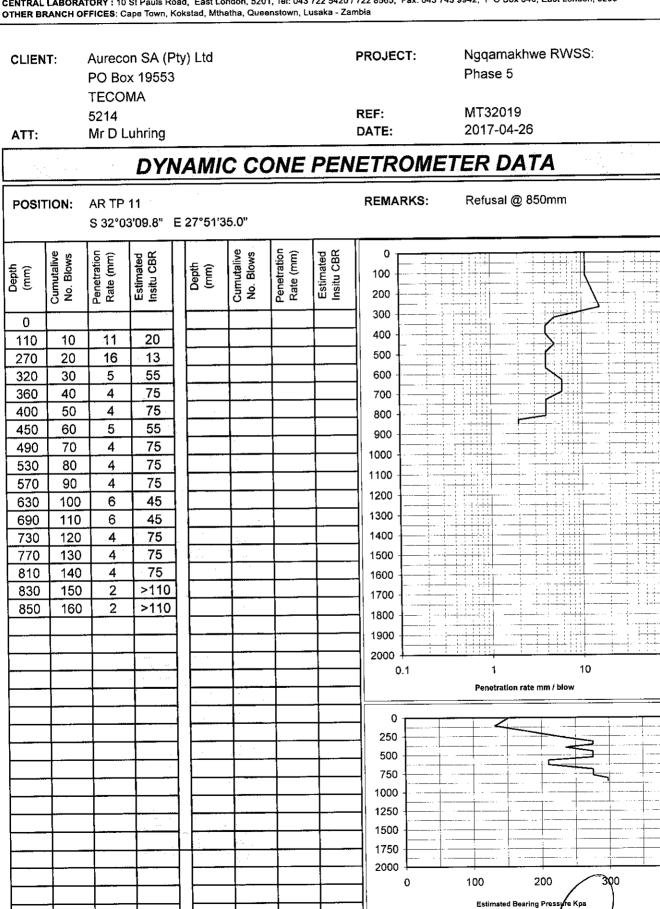
CLIEN	1T:	PO Bo TECO	on SA (P ox 19553 MA					PROJECT:	Phase		
ATT:		5214 Mr D I	uhring					REF: DATE:	MT320 2017-0	4-26	
			DYN	IAMI	<u>C C(</u>	ONE	PEN	IETRO	METER D	PATA	
POSI	TION:	AR TP S 32°0	9 2'57.7" E	E 27°51'2	0.0"			REMARK	S: Refusal	@ 100mm	
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0			
0 80 100	10 20	8	30 >110					400			
								600 700 800			
								900			
••••••••••••••••••••••••••••••••••••••								1100 1200 1300			
								1400			
								1700			
								2000 0.1	<u> </u>	10 on rate mm / biow	11
								250			
								1250 1500 1750			
									100 Estimated	200 Bearing Pressure Kpa	300 4
	-								Technical Sigr	natory	<u>-</u> D Louw

100

400

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


www.controlab.co.za

CLIEN	NT:	PO Bo	on SA (F x 19553					PROJECT:	-	qamakh ase 5	we RWSS:		
		TECO 5214						REF: DATE:		- 32019 17-0 4-2 6	s.		
ATT:			uhring	JAMI	C C(DNE	PEN				a de la de	· · ·	
POSI	TION:	AR TP S 32°0	10	E 27°51'2				REMARK		fusal @ 4		<u></u>	
(mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200					
0								300					
190	10	19	10					400			>===		
260	20	7	35			<u> </u>		500	······································				
310 340	30 40	5	55 110					- 600		·····			
370	50	3	110			1		800					
410	60	4	75										
440	70	3	110					1000					
470	80	3	110				-	1100					
		+				-		1200					
								1300 -					
								1400					
									······································				;
							+						
								1700					
			· · · · · ·		· · · ·			1900					
								2000					· - - - - - - - - -
	+	1		· ·				0.1		1	10		
									Pe	netration rate	mm / blow		
					· ·			┛╹⊏					
								250				2	
	+	+						500					
												• 	
								1250		· · · · · · · · · · · · · · · · · · ·			_
			· · · · · · · · · · · · · · · · · · ·	<u>· ·</u>			-	1500					
								1750					
	1			.	×			2000			200		
								°			200 g Pressure Kpa)	
								l			-10	_/	

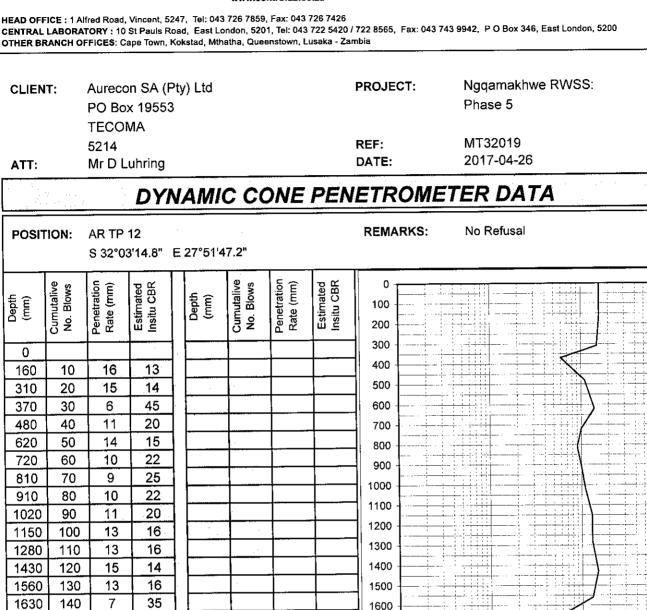
100

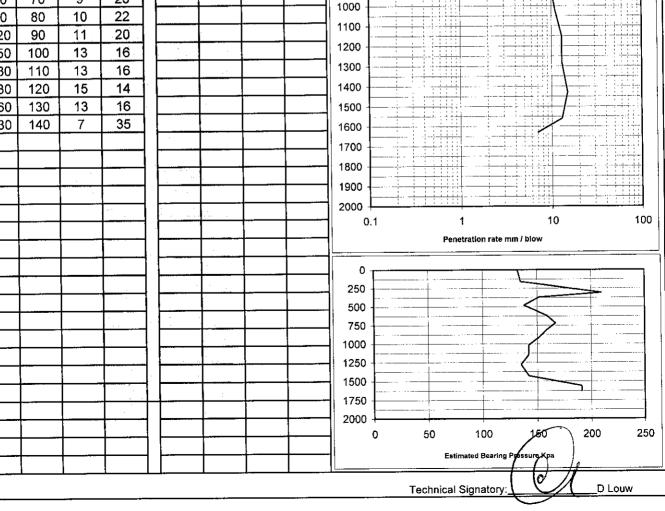
CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

100

400

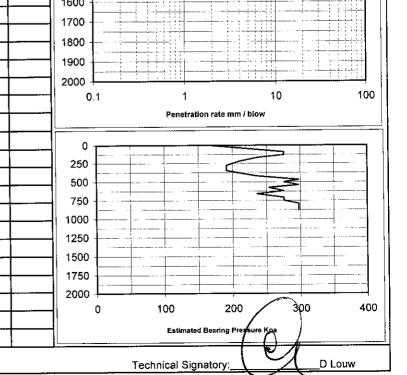

D Louw


2

Technical Signatory

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za



CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE : 1 Alfred Road, Vincent, 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia Nggamakhwe RWSS: PROJECT: Aurecon SA (Pty) Ltd CLIENT: Phase 5 PO Box 19553 **TECOMA** MT32019 **REF:** 2017-04-26 DATE: Mr D Luhring ATT: DYNAMIC CONE PENETROMETER DATA **REMARKS:** Refusal @ 880mm POSITION: AR TP 13 S 32°03'18.5" E 27°51'59.2" Cumutalive No. Blows Penetration Rate (mm) Estimated Insitu CBR Penetration Rate (mm) Cumutalive No. Blows Estimated Insitu CBR (mm) (mm) Ц., 3.5 4.5 1.1.1 >110 0.1 >110 Penetration rate mm / blow

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

CLIENT : Aurecon SA (Pty) Ltd

TECOMA

PO Box 19553

OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

To 308 SO/JEC 17025:2005 Accredited Laboratory

PROJECT: NGQAMAKHWE RWSS: PHASE 5

DATE RECEIVED: 2017-04-30

DATE TESTED: 2017-05-29

www.controlab.co.za

CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200

	MATE	RIALS	TEST	REPORT		
	3307A	3308A	3310	11111-112	3313	- 104 - 102 - 122
SAMPLE NO:	<u></u>	TP 2	TP 4		TP 7	
POSITION / CHAINAGE	111	11 2	PIPELI			
DEPTH mm	0 - 600	0 - 550	0 - 30	· · · · · · · · · · · · · · · ·	0 - 200	
DESCRIPTION	dk Y O	dk R	lt Br	dk R	lt Br	
DESCRIPTION	sty s	sty s	sty s		sty s	
			0,90			
	Sieve	Analysis (Wet Prep	aration) TMH1	- Method A1 (a)		
% PASSING 75 mm						
63 mm						
53 mm						
37.5 mm						
26.5 mm						
19 mm			100			
13.2 mm		100	99		100	
4.75 mm		96	88	100	98	
2.00 mm	100	91	83	98	96	
0.425 mm	99	86	81	95	96	
0.075 mm	29.7	39.6	34.0	30.4	23.0	
		Soil Mortar Analy	sis - TMH1 - Me	thod A5		
COURSE SAND (%)	1	5	2	3	0	
FINE SAND (%)	69	51	57	66	76	
SILT / CLAY (%)	30	44	41	31	24	
GRADING MODULUS	0.71	0.83	1.02	0.77	0.85	
	Δ	tterberg Limits - T	MH1 - Methods			
LIQUID LIMIT (%)	CBD	20	CBD	CBD	CBD	
PLASTICITY INDEX (%)	NP	6	NP	NP	NP	
LINEAR SHRINKAGE (%)	0.0	2.5	0.0	0.0	0.0	
Maximum D	ry Density & Optimum Mo	isture Content - TM				A8
COMPACTIBILITY %	0.18	0.16	0.18	0.14	0.14	
Optimum Moisture Content						
C.B.R. @ 100% COMPACT					-	
C.B.R. @ 98 % COMPACT						
C.B.R. @ 95 % COMPACT					+	
C.B.R. @ 93 % COMPACT C.B.R. @ 90 % COMPACT						+
SWELL @ 100% COMP. (+/
T R H 14 CLASSIFICATIO						17
The above test results are pertinent Controlab shall not be liable for error consent of Controlab.	to the samples tested only. Wh				Technical Signato	IN: JAN
Remarks: Sample Delivered by Customer Sampled by Controlab	x				Page 1	of 2
						TF

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

sty s

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT : Aurecon SA (Pty) Ltd PO Box 19553 TECOMA

5214

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-29 DATE REPORTED: 2017-05-30 TEST REPORT NO.: MT32019

sty s

Mr D Luhring ATT: MATERIALS TEST REPORT 3316 3317 3322 3315 SAMPLE NO: TP 9 TP 10 **TP 14** TP 8 POSITION / CHAINAGE PIPELINE 0 - 200 0 - 460 0 - 1150 0 - 500 DEPTH mm dk R O dk R O It Br lt Br DESCRIPTION

sty s

	Sieve A	nalysis (Wet Prepa	ration) TMH1 - Meth	od A1 (a)		
% PASSING 75 mm						
63 mm						
53 mm			*******			
37.5 mm						
26.5 mm					1	
19 mm						
13.2 mm						
4.75 mm	100	100		98		
2.00 mm	99	97	100	96		<u> </u>
0.425 mm	97	94	98	93		
0.075 mm	29.1	28.2	31.4	46.5		
	- <u> </u>	Soil Mortar Analysi	s - TMH1 - Method /	15		

sty s

COURSE SAND (%)	2	3	2	3	
FINE SAND (%)	69	68	67	48	
SILT / CLAY (%)	29	29	31	48	
GRADING MODULUS	0.75	0.81	0.71	0.65	

	A	tterberg Limits - I M	H1 - Methods A2, A.	5, A4		
LIQUID LIMIT (%)	CBD	CBD	CBD	CBD		
PLASTICITY INDEX (%)	NP	NP	NP	NP		<u>_</u>
LINEAR SHRINKAGE (%)	0.0	0.0	0.0	0.0	i	

Maximum Dry Density & Optimum Moisture Content - TMH1 - Method A7 / California Bearing Ratio - TMH1 - Method A8

COMPACTIBILITY %	0.14	0.14	0.18	0.18	
Optimum Moisture Content (%)					
C.B.R. @ 100% COMPACTION					
C.B.R. @ 98 % COMPACTION					
C.B.R. @ 95 % COMPACTION					
C.B.R. @ 93 % COMPACTION					
C.B.R. @ 90 % COMPACTION					
SWELL @ 100% COMP. (%)					
T R H 14 CLASSIFICATION					
The above test results are pertinent to the sa Controlab shall not be liable for erroneous ter consent of Controlab.					Technical Signatory: J Atterbury
Remarks:	<u>.</u>				
Sample Delivered by Customer					
Sampled by Controlab]				Page 1 of 2

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT : Aurecon SA (Pty) Ltd PO Box 19553

TECOMA

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-29 DATE REPORTED: 2017-05-30 TEST REPORT NO.: MT32019

5214 ATT: Mr D Luhring

MATERIALS TEST REPORT 2. 5.2 siju 3324A 3326 3327 3330 3332 SAMPLE NO: TP 15 TP 18 TP 17 POSITION / CHAINAGE TP 21 TP 22 PIPELINE 0 - 230 0 - 500 0 - 450 0 - 400 DEPTH mm 0-600 dk R Br dk R O DESCRIPTION dk R O dk R O dk G sty s sty s sty s sty s sty s Sieve Analysis (Wet Preparation) TMH1 - Method A1 (a) % PASSING 75 mm 63 mm

00 11111						
53 mm						
37.5 mm						
26.5 mm						
19 mm	100			100		
13.2 mm	99		100	94	100	
4.75 mm	98	100	99	93	99	
2.00 mm	95	98	98	88	96	
0.425 mm	91	96	96	84	94	
0.075 mm	36.2	32.6	46.1	42.0	47.0	
		Soil Mortar Analysi	s - TMH1 - Method A	A5		10
COURSE SAND (%)	4	2	2	5	2	
FINE SAND (%)	58	65	51	48	49	
SILT / CLAY (%)	38	33	47	48	49	
GRADING MODULUS	0.78	0.73	0.60	0.86	0.63	
	A	tterberg Limits - TMI	H1 - Methods A2, A3	3, A4		
LIQUID LIMIT (%)	CBD	CBD	CBD	CBD	CBD	
PLASTICITY INDEX (%)	NP	SP	NP	SP	SP	
LINEAR SHRINKAGE (%)	0.0	1.0	0.0	1.0	0.5	
Maximum Dry Dens	ity & Optimum Moi	sture Content - TMH	1 - Method A7 / Cal	ifornia Bearing Rat	io - TMH1 - Method A8	
COMPACTIBILITY %	0.21	0.18	0.22	0.21	0.20	
Optimum Moisture Content (%)						
C.B.R. @ 100% COMPACTION						
C.B.R. @ 98 % COMPACTION						
C.B.R. @ 95 % COMPACTION						
C.B.R. @ 93 % COMPACTION						
C.B.R. @ 90 % COMPACTION	· · · · · · · · · · · · · · · · · · ·					
SWELL @ 100% COMP. (%)						
T R H 14 CLASSIFICATION		· ·			<u> </u>	
The above test results are pertinent to the sai Controlab shall not be liable for erroneous test consent of Controlab.					Technical Signatory:	
Remarks:						-1-
Sample Delivered by Customer						
Sampled by Controlab					Page 1 of 2	

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY. GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Aurecon SA (Pty) Ltd PROJECT: NGQAMAKHWE RWSS: PHASE 5 PO Box 19553 DATE RECEIVED: 2017-04-30 **TECOMA** DATE TESTED: 2017-05-29 5214 DATE REPORTED: 2017-05-30 ATT: Mr D Luhring TEST REPORT NO .: MT32019 MATERIALS TEST REPORT 3336 3340 3342A 3343 SAMPLE NO: 3344A TP 25 TP 28 TP 29 POSITION / CHAINAGE TP 30 TP 30 PIPELINE 270 - 430 140 - 600 DEPTH mm 220 - 500 0 - 600 600 - 1400 dk Br dk R O dk R Br DESCRIPTION dk G lt Br sty s sty st sty s sty s sty s Sieve Analysis (Wet Preparation) TMH1 - Method A1 (a) % PASSING 75 mm 63 mm 53 mm 37.5 mm 26.5 mm 100 19 mm 99 100 13.2 mm 99 100 93 99 98 99 100 4.75 mm 87 98 96 99 2.00 mm 98

77

0.425 mm

0.075 mm	37.0	42.7	44.2	36.5	33.0	
		Soil Mortar Analysi	s - TMH1 - Method As	i		
COURSE SAND (%)	11	1	4	2	2	
FINE SAND (%)	46	55	50	61	65	
SILT / CLAY (%)	43	44	46	37	33	
GRADING MODULUS	0.99	0.62	0.68	0.70	0.71	

92

96

97

97

Atterberg Limits - TMH1 - Methods A2, A3, A4							
LIQUID LIMIT (%)	CBD	CBD	CBD	CBD	CBD		
PLASTICITY INDEX (%)	SP	SP	SP	NP	NP		
LINEAR SHRINKAGE (%)	1.5	0.5	1.5	0.0	0.0		
	·····	•	· · · · · · · · · · · · · · · · · · ·			•	

Maximum Dry Density & Optimum Moisture Content - TMH1 - Method A7 / California Bearing Ratio - TMH1 - Method A8

COMPACTIBILITY %	0.22	0.2	0.19	0.22	0.16	
Optimum Moisture Content (%)						
C.B.R. @ 100% COMPACTION						
C.B.R. @ 98 % COMPACTION						
C.B.R. @ 95 % COMPACTION						
C.B.R. @ 93 % COMPACTION						
C.B.R. @ 90 % COMPACTION						
SWELL @ 100% COMP. (%)						
T R H 14 CLASSIFICATION						I_{0}
The above test results are pertinent to the sar Controlab shall not be liable for erroneous tes consent of Controlab.					Technical Signatory	
Remarks:				********		\square
Sample Delivered by Customer						۰ ۱
Sampled by Controlab					Page 1 of	3

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT : Aurecon SA (Pty) Ltd PO Box 19553 TECOMA

Mr D Luhring

5214

ATT:

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-29 DATE REPORTED: 2017-05-30 TEST REPORT NO.: MT32019

SAMPLE NO:	3346	3348	3349	3350	3353	
POSITION / CHAINAGE	TP 31	TP 32		33	TP 34	
Conton / Chanade			PIPELINE		1 1 0 1	
DEPTH mm	250 - 1900	0 - 620	100 - 500	500 - 1200	0 - 900	
DESCRIPTION	lt Br	It Br	dk G	It Br	lt Br	
	sdy cl	sty s	sty s	sty s	sty s	
			Í			
	Sieve A	nalysis (Wet Prepa	uration) TMH1 - Meth	od A1 (a)		
6 PASSING 75 mm						
63 mm						
53 mm						
37.5 mm						
26.5 mm						
19 mm					100	
13.2 mm	100	100			99	
4.75 mm	98	99	100		98	
2.00 mm	96	98	99	100	96	
0.425 mm	95	95	97	99	94	
0.075 mm	64.6	28.5	44.6	43.6	39.5	
	1	Soil Mortar Analys	is - TMH1 - Method /	45		
COURSE SAND (%)	1	3	2	1	2	
FINE SAND (%)	32	68	53	55	57	
SILT / CLAY (%)	67	29	45	44	41	
GRADING MODULUS	0.44	0.79	0.59	0.57	0.71	
	Att	erberg Limits - TN	IH1 - Methods A2, A	3, A4		
LIQUID LIMIT (%)	39	CBD	CBD	CBD	CBD	
PLASTICITY INDEX (%)	21	NP	NP	NP	NP	
LINEAR SHRINKAGE (%)	10.5	0.0	0.0	0.0	0.0	
Maximum Dry Den	sity & Optimum Mois	ture Content - TM	H1 - Method A7 / Cal	ifornia Bearing Rati	o - TMH1 - Method A	8
COMPACTIBILITY %	0.22	0.22	0.16	0.20	0.14	
Optimum Moisture Content (%)						
C.B.R. @ 100% COMPACTION						
C.B.R. @ 98 % COMPACTION						
C.B.R. @ 95 % COMPACTION						
C.B.R. @ 93 % COMPACTION						
C.B.R. @ 90 % COMPACTION		·····				\frown
SWELL @ 100% COMP. (%)						
T R H 14 CLASSIFICATION					/	
The above test results are pertinent to the sa Controlab shall not be liable for erroneous te consent of Controlab.					Technical Signatory:	J Attendury
Remarks:]					\checkmark
Sampled by Controlab]				Page 2 of	3

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT : Aurecon SA (Pty) Ltd PO Box 19553 TECOMA

Mr D Luhring

5214

ATT:

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-30 DATE REPORTED: 2017-06-01 TEST REPORT NO.: MT32019

	MATE	RIALS	TEST RE	EPORT		
SAMPLE NO:	3355	3359	3361		<u> </u>	I****
POSITION / CHAINAGE	TP 35	TP 37	TP 38			
		PIPELINE	· · · · · · · · · · · · · · · · · · ·		···· ···· ···	
DEPTH mm	350 - 1200	0 - 200	0 - 400		1	
DESCRIPTION	lt Br	lt Br	lt R			
	sty s	sty s	sty s			· · · ·
	·	•		······································		
	Sieve A	nalysis (Wet Prep	aration) TMH1 - Meth	od A1 (a)		
% PASSING 75 mm		· · ·				
63 mm						
53 mm						
37.5 mm						· · · · ·
26.5 mm						· · ·
19 mm					· · · · ·	
13.2 mm		100	-		-	
4.75 mm	100	99	100			
2.00 mm	98	98	99			
0.425 mm	95	96	98		+	
0.925 mm	49.4	44.2	60.8			
0.075 mm	· · · · · · · · · · · · · · · · · · ·			۱ <u>ــــــــــــــــــــــــــــــــــــ</u>		l
COURSE SAND (%)	3		sis - TMH1 - Method A			
	47	53	38			<u> </u>
FINE SAND (%)	50	45	61			
SILT / CLAY (%)						
GRADING MODULUS	0.58	0.62	0.42	L		I
	· · · · · · · · · · · · · · · · · · ·		MH1 - Methods A2, A3	, A4	.	
	CBD		CBD			
PLASTICITY INDEX (%)	NP	NP	NP		+	
LINEAR SHRINKAGE (%)	0.0	0.0	0.0	L		
			IH1 - Method A7 / Cali	fornia Bearing Rati I	io - TMH1 - Method # T	18
COMPACTIBILITY %	0.18	0.20	0.22			
Optimum Moisture Content (%)						
C.B.R. @ 100% COMPACTION					+	<u></u>
C.B.R. @ 98 % COMPACTION C.B.R. @ 95 % COMPACTION	├					
C.B.R. @ 93 % COMPACTION			1			1
C.B.R. @ 90 % COMPACTION	1	·····	•	, .	1	
SWELL @ 100% COMP. (%)	+		+		<u> </u>	
T R H 14 CLASSIFICATION	├				1	6
The above test results are pertinent to the sa Controlab shall not be liable for erroneous te consent of Controlab.					Technical Signatory	JAtterbury

Remarks: Sample Delivered by Customer

х

Page 1 of 2

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia CLIENT : Aurecon SA (Pty) Ltd PROJECT: NGQAMAKHWE RWSS: PHASE 5 PO Box 19553 DATE RECEIVED: 2017-04-30 **TECOMA** DATE TESTED: 2017-05-30 5214

Mr D Luhring ATT:

DATE REPORTED: 2017-06-01 TEST REPORT NO .: MT32019

	MATE	RIALS 1	TEST RE	EPORT		
SAMPLE NO:	3364	3366	3370	3372		
POSITION / CHAINAGE	TP 39	TP 40	TP 42	TP 43		
		PIPE	LINE		· · · · · · · · · · · · · · · · · · ·	
DEPTH mm	0 - 650	0 - 800	0 - 300	0 - 750		
DESCRIPTION	lt R	dk G	dk R Br	dk Br		
	sdy st	sdy st	sdy st	sdy st		
l	Sieve /	nalvsis (Wet Prena	ration) TMH1 - Metho	od A1 (a)		
% PASSING 75 mm					1	
63 mm						
53 mm					+	•
37.5 mm			·		······································	
26.5 mm					 	
	·			,		
13.2 mm		··-	100	100	╅────┤──	
4.75 mm	· · · ·	100	98		······································	
2.00 mm	100	99	96	99 96		
0.425 mm	98	99 97	90	· · · · · · · · · · · · · · · · · · ·		
0.075 mm	72.5			92		
0.075 mm		52.4	47.8	47.8	_ll	
COURSE SAND (%)	2	2	s - TMH1 - Method A			
FINE SAND (%)	26	45	4 46	<u>4</u> 46		
SILT / CLAY (%)	73	53	50	<u> </u>		· · ·
GRADING MODULUS	0.30	0.52	0.64			
				0.64		
LIQUID LIMIT (%)	24		11 - Methods A2, A3, CBD	CBD	<u> </u>	
PLASTICITY INDEX (%)	10	SP	SP			
LINEAR SHRINKAGE (%)	5.0	<u> </u>		<u>SP</u>		
				1.0	<u> </u>	· ·
COMPACTIBILITY %	0.20	0.22			io - TMH1 - Method A8	
Optimum Moisture Content (%)	0.20	0.22	0.22	0.25	<u> </u>	
C.B.R. @ 100% COMPACTION					<u> </u>	· · · · · · · · · · · · · · · · · · ·
C.B.R. @ 98 % COMPACTION						
C.B.R. @ 95 % COMPACTION					· · · ·	
C.B.R. @ 93 % COMPACTION					· · · · · · · · · · · · · · · · · · ·	
C.B.R. @ 90 % COMPACTION						
SWELL @ 100% COMP. (%)						
T R H 14 CLASSIFICATION					1	
The above test results are pertinent to the sam Controlab shall not be fiable for erroneous test consent of Controlab.	ples tested only. While ing or reporting thereof	a the tests are carried ou This report may not be	t according to recognize reproduced except in fu	d standards, Il withour prior	Technical Signatory	Kour
Remarks:						
Sample Delivered by Customer						- \
Sampled by Controlab					Page 1 of 2	

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES Testing Laboratory To308 ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT : Aurecon SA (Pty PO Box 19553 TECOMA	y) Ltd PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-31						
5214 ATT: Mr D Luhring			E REPORTED		·		
	MATE	RIALS	TEST R	EPORT			
SAMPLE NO:	3374	3376	3378				
POSITION / CHAINAGE	TP 44	TP 45	TP 46				
		PIPELINE					
DEPTH mm	0 - 650	0 - 390	0 - 700				
DESCRIPTION	dk Br	dk Br	dk Br				
	sty s	sdy st	sdy st				
· · · · · · · · · · · · · · · · · · ·	Sieve /	Analysis (Wet Prepa	ration) TMH1 - Met	hod A1 (a)			
% PASSING 75 mm							
63 mm							
53 mm							
37.5 mm							
26.5 mm						·····	
19 mm							
13.2 mm							
4.75 mm	100	100	100	· · · · · · · · · · · · · · · · · · ·			
2.00 mm	99	97	98		· · · · · · · · · · · · · · · · · · ·		
0.425 mm	96	92	85		<u> </u>		
0.075 mm	44.2	58.9	71.4			·····	
	+	Soil Mortar Analysi		1A5		<i>ا</i>	
COURSE SAND (%)	3	5	13		1		
FINE SAND (%)	52	34	14	· · · · · · · · ·			
SILT / CLAY (%)	45	61	73		<u> </u>		
GRADING MODULUS	0.61	0.52	0.46	+			
		tterberg Limits - TMI		3 44		لــــــــــــــــــــــــــــــــــــ	
LIQUID LIMIT (%)	CBD	20	27		Ĩ		
PLASTICITY INDEX (%)	SP	6	8		·		
LINEAR SHRINKAGE (%)	1.0	2.5	4.0				
				l ifornia Bearing Rati	. TIMH1 . Mothod A	•	
COMPACTIBILITY %	0.21	0.21	0,18		S-TWHT-WEDDEA	•	
Optimum Moisture Content (%)	0.21	V.2	0.10				
C.B.R. @ 100% COMPACTION	····				· · · · · · · · · · · · · · · · · · ·		
C.B.R. @ 98 % COMPACTION				<u> </u>		·····	
C.B.R. @ 95 % COMPACTION		· · · · · ·		<u> </u>	†		
C.B.R. @ 93 % COMPACTION			,	1			
C.B.R. @ 90 % COMPACTION				1			
SWELL @ 100% COMP. (%)							
T R H 14 CLASSIFICATION							
The above test results are pertinent to the sar Controlab shall not be liable for erroneous tes consent of Controlab,	nples tested only. While ting or reporting thereof	e the tests are carried ou f. This report may not be	at according to recogniz reproduced except in t	ed standards, full withour prior	Technical Signatory	JAtterbury	
Remarks:	<u></u>				1	\rightarrow	
Sample Delivered by Customer						\bigvee	
Sampled by Controlab					Page 1 of	2	
					l iage i Ol	4	

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

Aurecon SA (Pty) Ltd

PO Box 19553

www.controlab.co.za

PROJECT: NGQAMAKHWE RWSS: PHASE 5

DATE RECEIVED: 2017-04-30

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

TECOMA 5214	DATE REPORTED: 2017-05-23 DATE REPORTED: 2017-05-30 TEST REPORT NO.: MT 32019						
ATT: Mr D Luhring							
	OUNDA1	TION INL	DICATOR	REPORT	T		
SAMPLE NO	3307	3308	3309	3312	3314		
POSITION	TP 1	TP 2	TP 3	TP 4	TP 7	·	
		· · · · · · · · · · · · · · · · · · ·	PIPELINE	·			
DEPTH mm	1600 - 3100	550 - 800	0 - 2000	400 - 1000	400 - 600		
DESCRIPTION	dk O	Pale R	dk R	dk R O	lt Br		
	sty s		high weath	Ss +	Ss +	<u> </u>	
······································	· · · · · · · · · · · · · · · · · · ·	cly s	Ms + cly s	sty s	sty s		
	SIEVE ANALYSIS				5		
% PASSING 75 mm		100		·····			
37.5 mm		95	100	100	100	<u></u>	
19 mm		67	85	54	64	· · · · · · · · · · · · · · · · · · ·	
9.5 mm		43	57	35	46		
4.75 mm		29	39	28	37		
2.36 mm		23	29	24	30	<u> </u>	
1.18 mm	100	21	24	23	27		
0.600 mm	99	20	22	21	25		
0.425 mm	98	20	21	20	24	· · · ·	
0.300 mm	95	19	21	19	22		
0.150 mm	73	14	20	12	14		
0.075 mm	37.2	9.2	17.3	7.0	8.4		
			SIS: Method AST		0.1		
0.06 mm	31	8	15	6	8		
0.02 mm	15	5	10	4	6		
0.006 mm	10	4	8	2	4		
0.002 mm	8	3	7	1	4		
	ATTERB	ERG LIMITS: Me	thod: TMH1 A2 ;		<u>_</u>		
	CBD	23	31	20	19		
PLASTICITY INDEX	SP	12	17	6	4		
LINEAR SHRINKAGE	1.5	5.5	8.5	3.0	2.5		
· · · · · · · · · · · · · · · · · · ·	PREDICTIO	N OF HEAVE (V	AN DER MERWE	METHOD)			
PI WHOLE SAMPLE	0.0	2.0	4.0	1.0	1.0		
POTENTIAL EXPANSIVENESS	LOW	LOW	LOW	LOW	LOW /		
he above test results are pertinent to the san thile the tests are carried our according to re sting or reporting thereof. This report may n emarks:	cognized standards Con	trolab shall not be liat			Technical Signatory:	JAtterbu	

Samples Delivered by Customer

Sampled by Controlab: YES

CLIENT:

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES Testing Laboratory To308 SO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

CIVIL ENGINEERING MATERIAL A GEOTECHNICAL AND EN

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214
ATT :	Mr D Luhring

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-23 DATE REPORTED: 2017-05-30 TEST REPORT NO.: MT 32019

SAMPLE NO	3318	3319	3320	3321	3323	
POSITION	TP 10	TP 11	TP 12	TP 13	TP 14	
FOSITION	11 10	<u> </u>	PIPELINE			_1
DEPTH mm	1000 - 1300	200 - 400	200 - 1100	120 - 300	2300 - 3000	
DESCRIPTION	lt R Br	dk R	dk R Br	lt Br	lt R Br	
	Ss +	high weath	dec Dol +	Ss +	high weath	
	cly s	Ss + cly s	cly s	sty s	Ss + sty s	
			IEVES: Method :	TMH1 A1(a) & A	5	
% PASSING 75 mm	100		100			
37.5 mm	82	100	88	100		
19 mm	67	94	51	68		
9.5 mm	58	65	33	45	100	
4.75 mm	53	36	23	33	93	
2.36 mm	50	25	18	27	91	
1.18 mm	48	21	16	24	90	
0.600 mm	46	20	15	22	90	
0.425 mm	44	19	14	21	90	
0.300 mm	41	19	14	17	88	
0.150 mm	27	15	13	11	68	
0.075 mm	14.1	10.7	9.9	5.7	42.8	
	HYDRO	METER ANALY	SIS: Method AST	M D422		
0.06 mm	12	10	9	5	37	
0.02 mm	7	7	6	2	22	
0.006 mm	4	5	5	1	15	
0.002 mm	3	4	4	1	12	
······································	ATTERE	ERG LIMITS: Me	thod: TMH1 A2 ;	A3 & A4		
LIQUID LIMIT	24	28	52	CBD	22	
PLASTICITY INDEX	12	12	24	SP	10	
LINEAR SHRINKAGE	5.5	6.0	12.0	1.5	5.0	
	PREDICTI	ON OF HEAVE (V	AN DER MERWE	E METHOD)		
PI WHOLE SAMPLE	5.0	2.0	3.0	0.0	9.0	$-\!\!/$
POTENTIAL EXPANSIVENESS	LOW	LOW	LOW	LOW	LOW	\square
The above test results are pertinent to the sam Nhile the tests are carried our according to re esting or reporting thereof. This report may r	ecognized standards Co	ontrolab shall not be lial			Technical Signatory	JAtt

Samples Delivered by Customer

Sampled by Controlab: YES

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

Aurecon SA (Pty) Ltd

PO Box 19553

www.controlab.co.za

PROJECT: NGQAMAKHWE RWSS: PHASE 5

DATE RECEIVED: 2017-04-30

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

TECOMA	A	D	ATE TESTED:	2017-05-23			
5214		DATE	REPORTED:	2017-05-30	·		
ATT : Mr D Luh	ring	TEST REPORT NO.: MT 32019					
	FOUNDA	TION INE	DICATOR	REPORT	-		
SAMPLE NO	3324B	3325	3328	3329	3331	3333	
POSITION	TP 15	TP 16	TP 19	TP 20	TP 21	TP 22	
₩ - ··· - ₩ +			PIPE				
DEPTH mm	230 - 680	250 - 570	430 - 800	120 - 440	400 - 1340	600 - 920	
DESCRIPTION	dk R O	dk R O	dk Br	Pale R	dk R O	lt R Br	
	Ss	Ss	Ss	Ss	Ss	Ss	
					00		
· · · · · · · · · · · · · · · · · · ·	SIEVE ANALYSI	S % PASSING S	SIEVES: Method :	TMH1 A1(a) & A	5		
% PASSING 75 mm							
37.5 mm	100	100	100	100	100	100	
19 mm	88	72	74	64	88	86	
9.5 mm	77	51	52	45	77	60	
4.75 mm	70	39	38	23	70	44	
2.36 mm	65	30	30	16	65	35	
1.18 mm	60	25	27	13	60	28	
0.600 mm	n 47	22	25	13	47	23	
0.425 mm	40	21	25	12	40	22	
0.300 mm	31	18	23	12	31	21	
0.150 mm	18	11	17	11	18	17	
0.075 mm	9.7	4.7	9.2	5.5	9.7	11.0	
	HYDRO	METER ANALY	SIS: Method AST	M D422			
0.06 mm	8	4	8	5	8	9	
0.02 mm	4	2	4	2	4	4	
0.006 mm	2	1	3	1	2	2	
0.002 mm	1	1	2	1	1	2	
	ATTERB	ERG LIMITS: Me	thod: TMH1 A2 ;	A3 & A4			
	CBD	CBD	CBD	CBD	CBD	33	
PLASTICITY INDEX	SP	SP	SP	SP	SP	10	
LINEAR SHRINKAGE	1.0	1.0	1.5	1.5	1.0	4.5	
			AN DER MERWE				
PI WHOLE SAMPLE	0.0	0.0	0.0	0.0	0.0	2.0	
POTENTIAL EXPANSIVEN The above test results are pertinent to		LOW	LOW	LOW	LOW	- Kow	
While the tests are carried our accord esting or reporting thereof. This repo Remarks:	ing to recognized standards Co	ntrolab shall not be liab			Technical Signatory:	JAtteroj	
Samples Delivered by Customer Sampled by Controlab: YES		HYDROMETI	ER ANALYSIS -	NON-ACCREI	DITED TESTS		

CLIENT:

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES Testing Laboratory ICO308 ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-24 DATE REPORTED: 2017-05-30 TEST REPORT NO.: MT 32019

ATT: Mr D Luhring

FOUNDATION INDICATOR REPORT

SAMPLE NO	3334	3335	3337	3338	3339	
POSITION	TP 23	TP 24	TP 25	TP 26	TP 27	
			PIPELINE			
DEPTH mm	130 - 550	300 - 520	430 - 670	120 - 1100	600 - 800	
DESCRIPTION	dk R Br	lt Ol	Pale R	lt R Br	Pale R	
	Ss	Ss	Sh +	Ss	Ms	
			cly s			
	SIEVE ANALYSIS	% PASSING S	IEVES: Method	:TMH1 A1(a) & A	5	
% PASSING 75 mm				100	100	
37.5 mm	100	100		87	97	
19 mm	68	60	100	75	62	
9.5 mm	44	38	77	50	30	
4.75 mm	29	27	48	36	17	
2.36 mm	20	20	31	25	10	
1,18 mm	17	17	24	16	7	
0.600 mm	15	16	22	9	6	
0.425 mm	15	15	21	4	5	
0.300 mm	14	14	20	4	5	
0.150 mm	11	10	19	2	4	
0.075 mm	6.1	5.0	15.6	1.3	3.3	
	HYDR	OMETER ANALY	SIS: Method AS	TM D422		
0.06 mm	5	4	_13	1	3	<u> </u>
0.02 mm	2	2	7	1	2	
0.006 mm	1	1	4	1	1	
0.002 mm	1	1	3	1	1	
······································	ATTER	BERG LIMITS: M	ethod: TMH1 A2	; A3 & A4	· · · · · · · · · · · · · · · · · · ·	
	28	CBD	25	CBD	28	
PLASTICITY INDEX	8	SP	12	SP	12	
LINEAR SHRINKAGE	4.0	1.0	6.0	1.0	6.0	
	PREDICT	ON OF HEAVE (VAN DER MERV	/E METHOD)		-
PI WHOLE SAMPLE	1.0	0.0	3.0	0.0	1.0	
POTENTIAL EXPANSIVENESS	LOW	LOW	LOW	LOW	LOW	I/A
The above test results are pertinent to the sa While the tests are carried our according to r testing or reporting thereof. This report may	mples received and te ecognized standards (Controlab shall not be li	able for erroneous		Technical Signator	VI JATLET

Samples Delivered by Customer

Sampled by Controlab: YES

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

Aurecon SA (Pty) Ltd

PO Box 19553

CLIENT:

www.controlab.co.za

PROJECT: NGQAMAKHWE RWSS: PHASE 5

DATE RECEIVED: 2017-04-30

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

TECC	OX 19553 DMA		TE TESTED:						
5214		DATE REPORTED: 2017-05-30							
	Luhring	TEST F	REPORT NO.:	MT 32019					
FOUNDATION INDICATOR REPORT									
SAMPLE NO	3341	3342B	3345	3347	3352	3354			
POSITION	TP 28	TP 29	TP 30	TP 31	TP 33	TP 34			
		•	PIPE	LINE					
DEPTH mm	140 - 660	500 - 1100	1840 - 2000	1900 - 3000	2000 - 3000	900 - 1240			
DESCRIPTION	lt R O	ItRO	lt R Br	dk Y O	Pale R	lt R Br			
	Ss	dec Dol +	Ss	high weath	Ss +	Ss +			
		sty cl		Ss + cly s	sdy st	sand			
	SIEVE ANALYS	SIS % PASSING S	SIEVES: Method :	:TMH1 A1(a) & A					
% PASSING 75	mm 100		100			100			
37.5	mm 92	100	79			93			
19	mm 69	64	51		100	74			
9.5	mm 46	42	42		92	67			
4.75	mm 32	25	38		83	60			
2.36	mm 26	17	37	100	76	57			
1,18	mm 23	12	36	98	68	55			
0.600	mm 21	9	35	97	63	53			
0.425	mm 20	8	34	96	62	50			
0.300	mm 18	7	33	96	62	46			
0.150	mm 12	6	24	89	61	27			
0.075	mm 5.3	4.3	11.4	37.2	51.1	12.0			
	HYDI	ROMETER ANALY	SIS: Method AS7	M D422					
0.06	5	4	10	34	42	10			
0.02	2	2	5	25	22	4			
0.006	1	1	3	20	11	3			
0.002	mm 1	1	3	18	9	2			
		RBERG LIMITS: M	1	ľ	05	000			
	CBD	48	23	25	25	CBD			
PLASTICITY INDEX	SP	15	8	12	9	SP			
LINEAR SHRINKAGE		7.5		5.5	4.5	1.0			
			3.0	12.0	6.0	0.0			
PI WHOLE SAMPLE		1.0 LOW	LOW	MED	LOW	LOW			
POTENTIAL EXPANS	SIVENESS LOW								
While the tests are carried our	according to recognized standards	Controlab shall not be lia			Technical Signatory	J Atterp			
testing or reporting thereof. 11 Remarks:	nis report may not be reproduced ex	Cept in full without prior c	onsent of Controlap,		I				

Sampled by Controlab: YES

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES Togola Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd PO Box 19553 TECOMA
ATT -	5214

PROJECT: NGQAMAKHWE RWSS: PHASE 5

DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-24

DATE REPORTED: 2017-05-30 TEST REPORT NO.: MT 32019

ATT : Mr D Luhring

् स्_र्द्र) FOUNDATION INDICATOR REPORT ing have Name 3358 3360 3362 SAMPLE NO 3357 **TP 37** TP 35 TP 36 **TP 38** POSITION PIPELINE 1900 - 3000 1400 - 1900 200 - 400 400 - 3000 DEPTH mm It R Br It R O DESCRIPTION lt Br lt R Br cly s Ss + Ss Ss + sty s sty s SIEVE ANALYSIS % PASSING SIEVES: Method :TMH1 A1(a) & A5 100 100 % PASSING 75 mm 87 90 37.5 mm 75 54 19 mm 100 63 41 100 9.5 mm 96 58 34 99 4.75 mm 54 30 98 91 2.36 mm 89 52 28 96 1.18 mm 26 95 0.600 mm 89 51 25 94 88 50 0.425 mm 0.300 mm 87 46 22 93 72 30 14 76 0.150 mm 5.2 50.6 52.0 15.5 0.075 mm HYDROMETER ANALYSIS: Method ASTM D422 45 13 5 43 0.06 mm 24 0.02 mm 28 8 4 23 4 2 19 0.006 mm 3 1 18 22 0.002 mm ATTERBERG LIMITS: Method: TMH1 A2 ; A3 & A4 26 CBD 21 LIQUID LIMIT CBD SP 8 12 SP PLASTICITY INDEX 6.5 1.0 1.0 4.5 LINEAR SHRINKAGE PREDICTION OF HEAVE (VAN DER MERWE METHOD) 11.0 0.0 0.0 8.0 **PI WHOLE SAMPLE** LOW LOW LOW LOW POTENTIAL EXPANSIVENESS The above test results are pertinent to the samples received and tested only Technical Signator While the tests are carried our according to recognized standards Controlab shall not be liable for erroneous J Atte testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab hurs Remarks: Samples Delivered by Customer

Camples Desivered by Odstolin

Sampled by Controlab: YES

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214
ATT :	Mr D Luhring

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-25 DATE REPORTED: 2017-06-01 TEST REPORT NO.: MT 32019

Mr D Luhring			REPORT NO.:		
F	OUNDAT	TION INL	DICATOR	REPOR	T
SAMPLE NO	3365	3368	3371	3373	
POSITION	TP 39	TP 41	TP 42	TP 43	
		PIPE	LINE		
DEPTH mm	650 - 3000	250 - 2300	300 - 1300	750 - 1200	
DESCRIPTION	lt R O	dk R Br	dk R O	lt Br	
	dec Dol +	dec Dol +	Ss +	Ss +	
	sty s	cly s	cly s	sty s	
			IEVES: Method :		15
% PASSING 75 mm		100		100	
37.5 mm		90	100	90	
19 mm		58	70	62	
9.5 mm	100	38	48	37	
4.75 mm	97	27	34	30	
2.36 mm	70	20	27	26	
1.18 mm	50	14	23	24	
0.600 mm	38	9	21	23	
0.425 mm	33	7	20	22	
0.300 mm	30	6	20	20	
0.150 mm	25	5	18	14	
0.075 mm	15.2	3.6	14.7	9.5	
	HYDRO	METER ANALY	SIS: Method AST	M D422	
0.06 mm	12	3	13	8	
0.02 mm	4	2	9	6	
0.006 mm	1	1	7	4	
0.002 mm	1	1	6	3	
	ATTERB	ERG LIMITS: Me	thod: TMH1 A2 ;	A3 & A4	
	CBD	38	31	17	
PLASTICITY INDEX	SP	16	16	4	
LINEAR SHRINKAGE	1.5	7.5	7.5	1.5	
	PREDICTIO	ON OF HEAVE (V	AN DER MERWE	METHOD)	
PI WHOLE SAMPLE	0.0	1.0	3.0	1.0	
POTENTIAL EXPANSIVENESS	LOW	LOW	LOW	LOW	
he above test results are pertinent to the san While the tests are carried our according to re asting or reporting thereof. This report may n Remarks:	cognized standards Co	ntrolab shall not be liab			Technical Signatory:

Samples Delivered by Customer

Sampled by Controlab: YES

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

Aurecon SA (Pty) Ltd

www.controlab.co.za

PROJECT: NGQAMAKHWE RWSS: PHASE 5

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

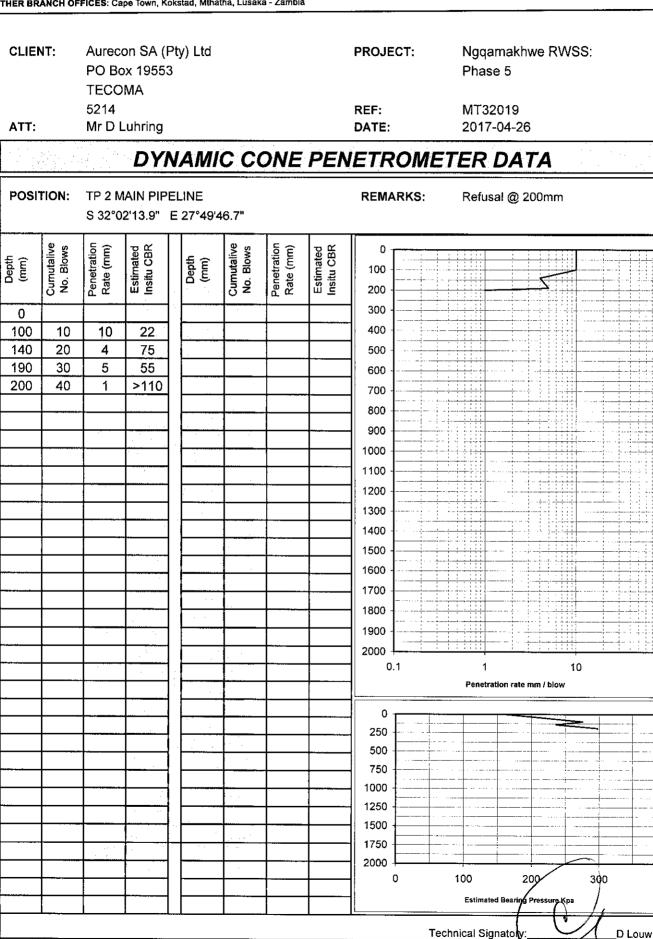
PO	Box 19553 COMA	3 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-25 DATE REPORTED: 2017-06-01					
521	4						
ATT: Mr [D Luhring			REPORT NO.:			
	F	OUNDAT	TION INC	DICATOR	REPOR	7	
SAMPLE NO		3375	3377	3379	1		
POSITION		TP 44	TP 45	TP 46			
······································			PIPELINE				
DEPTH mm		650 - 2300	390 - 410	700 - 2800	·····		
DESCRIPTION	-	dk Y	lt Br	Pale R		· · · · · · · · · · · · · · · · ·	
		Ss +		Ss +			<u></u>
		sty s	sty s	cly s			
		SIEVE ANALYSIS			:TMH1 A1(a) & /	45	
% PASSING 75	mm			100			
37.5	mm	100	100	92			
19	mm	83	87	69			
9.5	mm	73	78	47			
4.75	mm	63	68	34			
2.36	mm	55	63	25			
1.18	mm	49	60	19			
0.600) mm	46	58	16			
0.425	5 mm	44	56	14			
0.300) mm	44	53	14		· · · · · ·	
0.150) mm	44	37	12		· · · · · · · ·	
0.075	5 mm	34.3	18.6	9.8			
		HYDRO	METER ANALY	SIS: Method AS7	M D422		*
0.06	mm	28	16	9			
0.02	mm	12	8	6			
0.00€	mm	5	5	4	÷		
0.002	mm	4	4	3			
				thod: TMH1 A2 ;	A3 & A4	····	r
	w	26	CBD	33	···		
PLASTICITY INDEX		8	SP	13		•••	
LINEAR SHRINKAG	E	4.5	1.0	5.5			
				AN DER MERWE	METHOD)		
PI WHOLE SAMPLE		4.0	0.0	2.0			-/-
POTENTIAL EXPAN he above test results are pe		LOW	LOW	LOW			$\frac{1}{2}$
hile the tests are carried ou sting or reporting thereof. T	r according to re	cognized standards Cor	ntrolab shall not be liab			Technical Signatory	J Atterou
While the tests are carried ou testing or reporting thereof. T Remarks: Samples Delivered by Cu Sampled by Controlab: Y	his report may n stomer		t in full without prior co				

Sampled by Controlab: YES

CLIENT:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


CENTRAL	LABORAT	ORY : 10 S	St Pauls Ro	ad, East Lo	26 7859, Fa ondon, 5201 natha, Lusak	, Tel: 043 7	22 5420 /	722 8565, Fa	ax: 043 743	9942, POB	ox 346, East London, 52	200
CLIE	NT:	PO Bo	ox 1955	Pty) Ltd 3				PROJEC	CT:	Ngqar Phase	nakhwe RWSS: 5	
ATT.		TECO 5214						REF:		MT320 2017-0		
ATT:			Luhring					DATE:	_	San The Lo	an an an an an an an an an an an an an a	
			DY	NAW		JNE	PEI	NEIR	UWE	TER I	JAIA	
POSI	TION:		IAIN PIP 2'07.7"	ELINE E 27°49	9'36.7"			REMA	RKS:	Refusa	il @ 130mm	
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200				
0				2				300				
100	10	.10	22			1		400				
130	20	3	110					500		··· [] · [·] ·] · [·] · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
								600		······································		
			1	-				700 -		•		
								800 -		- 1 1 1 - 1 - 1 Kar		
								- 900 -		· · · · · · · · · · · · · · · · · · ·		
					*			1000 -				
	<u> </u>			┨┣━━				1100 -				
					·.			1200 -				
								1300 -				
			<u> </u>					1400				
								1500				
				-				1600 -	· · · · · · · · · · · · · · · · · · ·			
								1700 -				
			2			-		1800 -				
								1900				· · · · · · · · · · · · · · · · · · ·
					a <u>a</u>		<u> </u>	2000 +	1	1	10	 100
				-			·	-			on rate mm / blow	100
				· · · ·		-	+					
	1	- <u> </u>	. <u></u>				+					∍
			144	1.1.191			1	250 -				
								750				
	<u> </u>		-					1000				
	<u> </u>		<u> </u>					1250				
			1	┫╴┝━━━				1500 -			······	
		+						1750 -				
	<u> </u>					1	+	2000				
								_ °		100		300 400
										Estimated	Bealing Pressone Kpa	I
1											r 14 17	

Technical Signatory:

D Louw

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

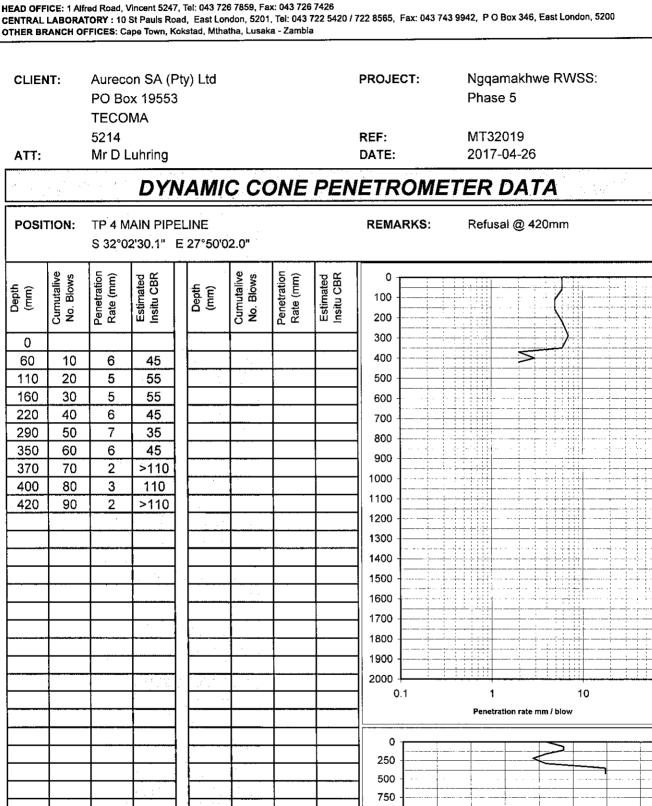
www.controlab.co.za

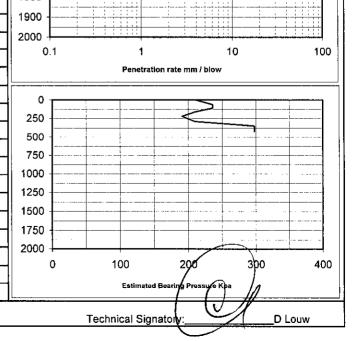
100

400

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

2010005/


CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


www.controlab.co.za

CLIEI	NT:		on SA (F ox 19553 IMA					PROJECT: REF:	e RWSS:			
ATT:		Mr D I	uhring					DATE:	MT32019 2017-04-26			
		- 	DYI	NAMI	<u>C C(</u>	ONE	PEN	NETROME	TER DAT	4		
POSI	TION:		1AIN PIPI 2'22.0"	ELINE E 27°49'5	5.8"	REMARKS:			Refusal @ 55mm			
(mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0			·····	
0 30	10	3	110					400			· · · · · · · · · · · · · · · · · · ·	
50 55	20 30	2 0.5	>110 >110			-		500 600				
				· · · · · · · · · · · · · · · · · · ·				800				
								900				
								1100				
								1300				
								1500				
								1700				
								1900				
		· .							1 Penetration rate mm	10 / blow		
								0				
	<u> </u>											
				· · · · · · · · · · · · · · · · · · ·				- 750		······································		
								- 1250				
							<u> </u>	- 2000 - 0	100 200	300		
								_	Estimated Bearing Pre	ssyrexpa		

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

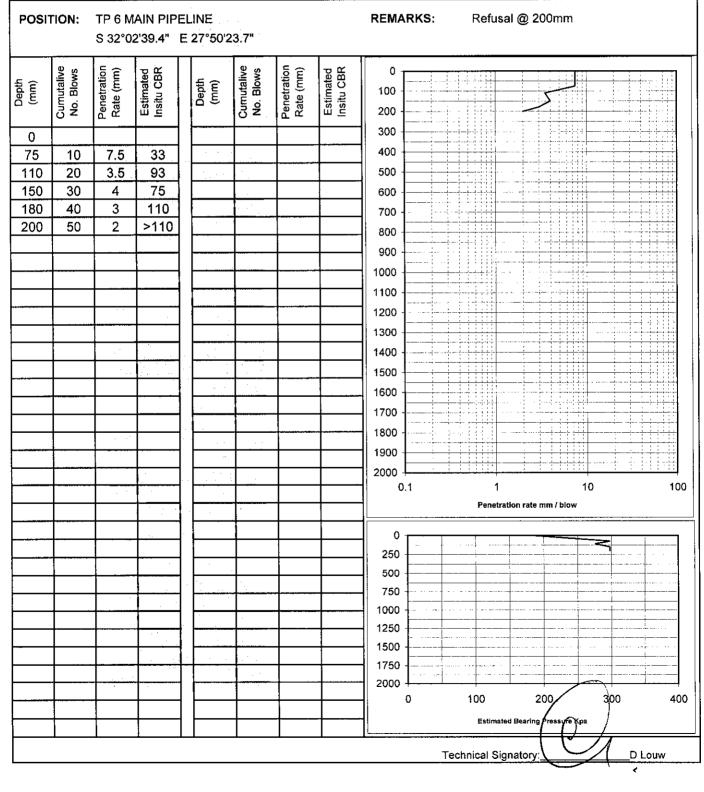
www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia Ngqamakhwe RWSS: CLIENT: Aurecon SA (Pty) Ltd PROJECT: Phase 5 PO Box 19553 **TECOMA** MT32019 5214 REF: 2017-04-26 ATT: Mr D Luhring DATE: DYNAMIC CONE PENETROMETER DATA POSITION: **TP 5 MAIN PIPELINE REMARKS:** Refusal @ 250mm


		S 32°0	2'30.2"	E 27°50	'11.5"										
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 - 200 -							
0								300 -							
75	10	7.5	33					400 -							
100	20	2.5	110					500 -							
140	30	4	75					600							
180	40	4	75					700							
240	50	6	45					800 -		· · · · · · · · · · · · · · · · · · ·					
250	60	1	>110					900							
				i				1000 -							
								1100 -							
								1200 -							
								1300							
								1400 -							
					1		_	1500 -		·					
			15 A.					1600 -							
		ļ	· ··					1700 -		ii					
								1800 -							
								1900 -							
				{											
								2000 - 0	1		1		10		100
								ľ	. 1		Penetr	ation rate mm			100
	ļ		·		· · · · ·			-							
		<u> </u>				_		0	r						
							_	250							
						_		500			-				
			·	┨╞━━━━				750		1	· · · · · · · · · · · · · · · · · · ·				
<u> </u>			•					1000							
L		-				_		1250							
	ļ	ļ		-				1500							
<u> </u>		<u> </u>					4	1750							
		<u> </u>		┨┣───			4	2000							
									0		100	200		\$00	400
ļ	ļ	-						4				ted Bearing P	/	b	
<u> </u>					1				<u> </u>			<u> </u>		/──	
										Tech	nical Si	gnatory:	Ľ,	\) Louw

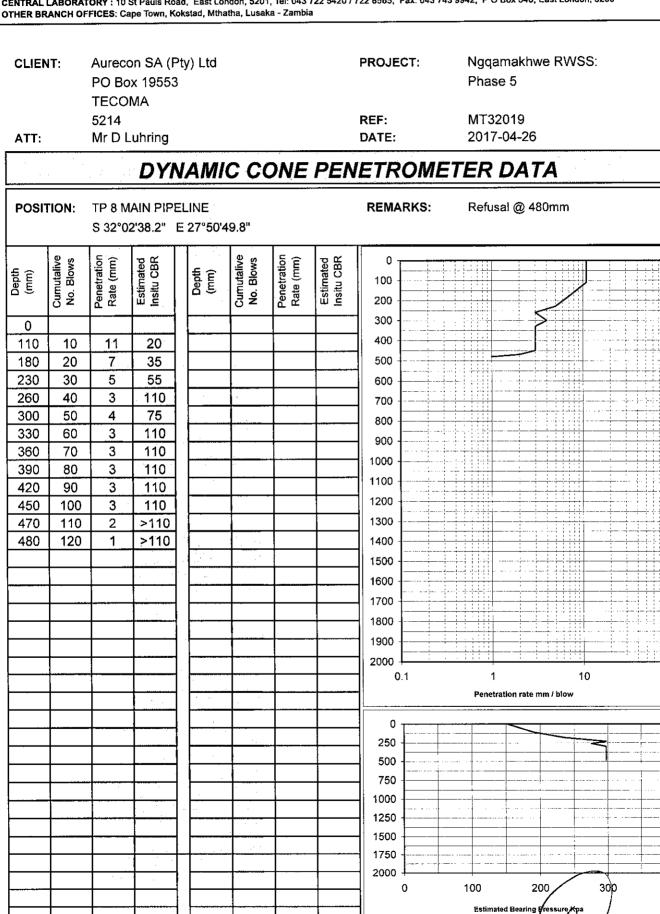
HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201. Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia Ngqamakhwe RWSS: Aurecon SA (Pty) Ltd **PROJECT:** CLIENT: Phase 5 PO Box 19553 **TECOMA** MT32019 5214 **REF:** 2017-04-26 DATE: ATT: Mr D Luhring DYNAMIC CONE PENETROMETER DATA

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


.

www.controlab.co.za

HEAD OFFICE: 1 CENTRAL LABO OTHER BRANCH	RATORY : 10 St	t Pauls Roa	ad, East Lond	ion, 5201	, Tel: 043 7	22 5420 /	722 8565, 1	Fax: 043 7	43 9942, POE	lox 346, East Londo	n, 5200	
CLIENT: ATT:	Aurecon PO Box TECOM 5214 Mr D Lu	: 19553 1A uhring		- <i>cc</i>	ONE	PEN	PROJE REF: DATE:		Ngqar Phase MT320 2017-0	019 04-26	S:	
POSITION			·				REMA			I @ 470mm		
Image: second) 8) 5) 4.5) 6.5) 7) 6) 4	30 55 65 40 35 45 75 75 75 >110			Penetration	Estimated	0 100 200 300 400 500 600 700 800 900 1000 1200 1300 1400 1300 1400 1300 1400 1000		100	l Bearing Pressure/Page		100
]						-	Estimate Technical Sig	$-+ \lor$.ouw

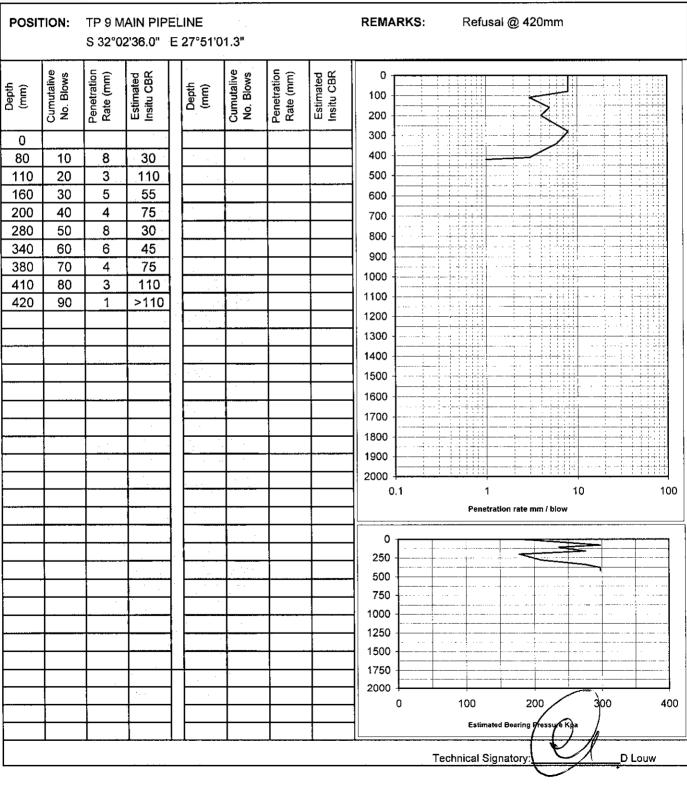
CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

100

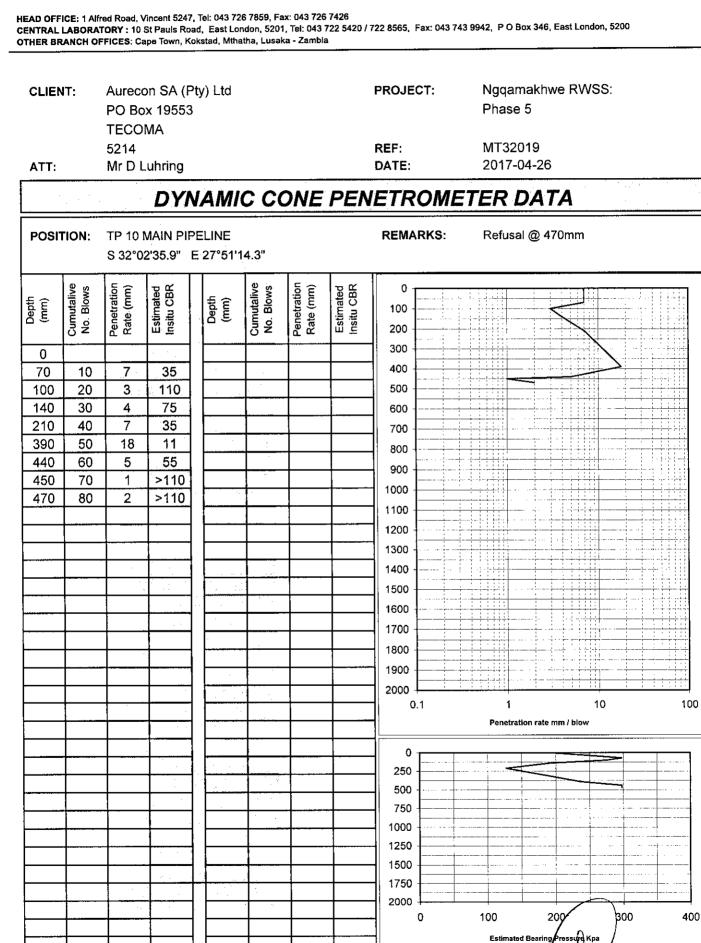
400

D Louw


Technical Signatory

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia Aurecon SA (Pty) Ltd Nggamakhwe RWSS: CLIENT: PROJECT: Phase 5 PO Box 19553 **TECOMA** MT32019 5214 **REF:** 2017-04-26 ATT: Mr D Luhring DATE: DYNAMIC CONE PENETROMETER DATA POSITION: REMARKS: Refusal @ 420mm **TP 9 MAIN PIPELINE** S 32°02'36.0" E 27°51'01.3" Cumutalive No. Blows Cumutalive No. Blows Penetration Rate (mm) Penetration Rate (mm) Estimated Insitu CBR Estimated Insitu CBR 0 (mm) (mm) 100 200 300 0 400 80 10 8 30 110 20 3 110 500 160 5 55 30 600

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

Technical Signatory

D Louw

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia Ngqamakhwe RWSS: CLIENT: Aurecon SA (Pty) Ltd **PROJECT:** Phase 5 PO Box 19553 **TECOMA** REF: MT32019 2017-04-26 DATE: ATT: Mr D Luhring DYNAMIC CONE PENETROMETER DATA Refusal @ 370mm POSITION: **TP 11 MAIN PIPELINE REMARKS:** S 32°02'40.3" E 27°51'22.5" Cumutalive No. Blows Cumutalive No. Blows Penetration Rate (mm) Penetration Rate (mm) Estimated Insitu CBR Estimated Insitu CBR (mm) Depth (mm) 1.1 4.5 4.5 4-1-4->110 0.1 Penetration rate mm / blow -

Technical Signatory:

Estimated Bearing F

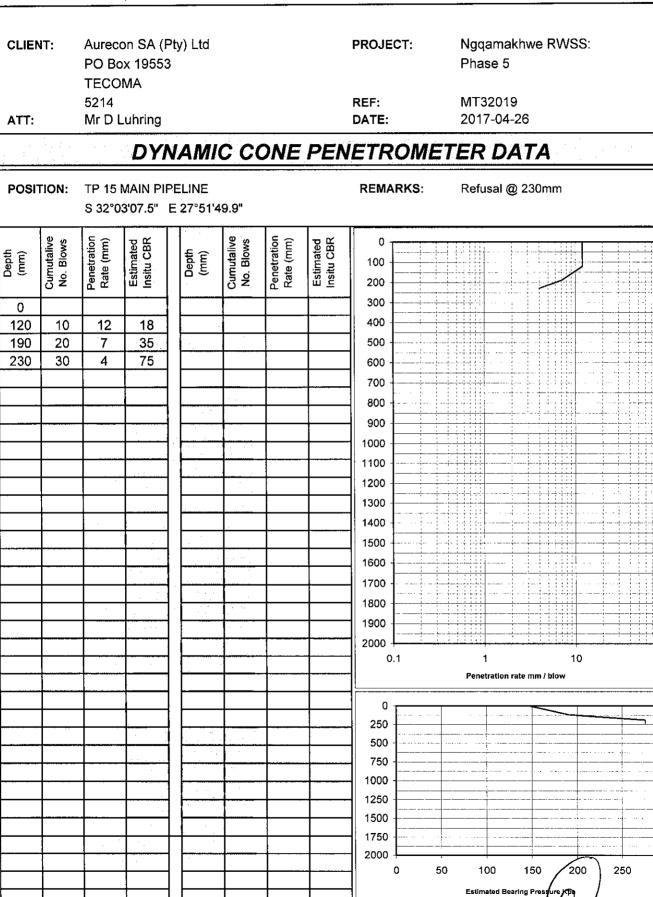
D Louw

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFF CENTRAL OTHER BR	LABORAT	TORY : 10	St Pauls Ro	ad	, East Lone	don, 5201	, Tel: 043 7	722 5420	/ 722 8565,	Fax: 043	3 743 9942,	, POB	ox 346, E	ast Lon	don, 52	00		
CLIEN ATT:	IT:	PO Bo TECO 5214	on SA (F ox 19553 MA .uhring		/) Ltd				PROJE REF: DATE:	CT:	P	lgqan hase 1T320 017-0)19	e RW	/SS:			
			DYI	V	AMIC	CCC	DNE	PEN	VETR	OM	ETE	R L	DAT	Ά			· ·	
POSI	FION:		MAIN PII 2'44.0"			1.3"			REMA	ARKS:	R	efusa	I @ 15	0mm				
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR		Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200									
0	40		45						300 400									
60 90	10 20	6 3	45 110						500									
110	30	2	>110						600								_	
130 150	40 50	2	>110 >110						800									
		ļ	· · · · · · · · · · · · · · · · · · ·	ŀ		· · · ·			900		· · · · · · · · · · · ·					+-+		
									1000			 						
								1	1100									
								ļ	1200									
		1		ŀ.					1300									
					2 . 3 				1500									
						н <u>н</u>	ļ		1600									
									1700		1 1 1 1 1 1 1 1 1 1	· · · · ·						
									1800			1.1				÷		+++-
				1					1900								· +···	
								<u> </u>	2000	•).1		 1			10			1
											F	Penetrati	on rate m	m / blow				
				ľ				1	0	·								
								 	250									
				ł			<u> </u>		500							ļ		
				2					- 750	 						<u> </u>		
			1]					1000									
				ŀ					1500									
						<u> </u>			1750		-							
		·	· .	1		1			2000		10	0		~	, ,	bo	i	
	1		1	1						0	10) E		20 Bearing P	/				4
1	1	1	1	L	1	1	1	1						ΓT	<u>r /</u>	1		

100


400

D Louw

Technical Signatory

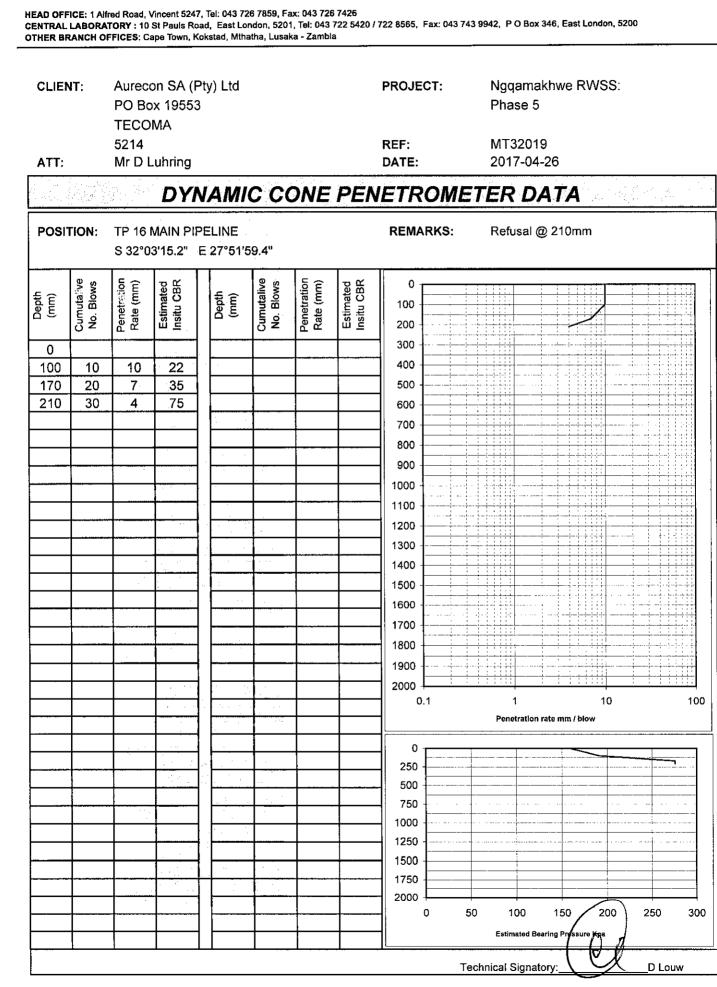
CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

100

300

D Louw


ť,

Technical Signatory

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambla

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

TO308 ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Aurecon SA (Pty) Ltd PO Box 19553

TECOMA

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-26 DATE REPORTED: 2017-05-30 TEST REPORT NO .: MT32019

	5214
ATT:	Mr D Luhring

MATERIALS TEST REPORT

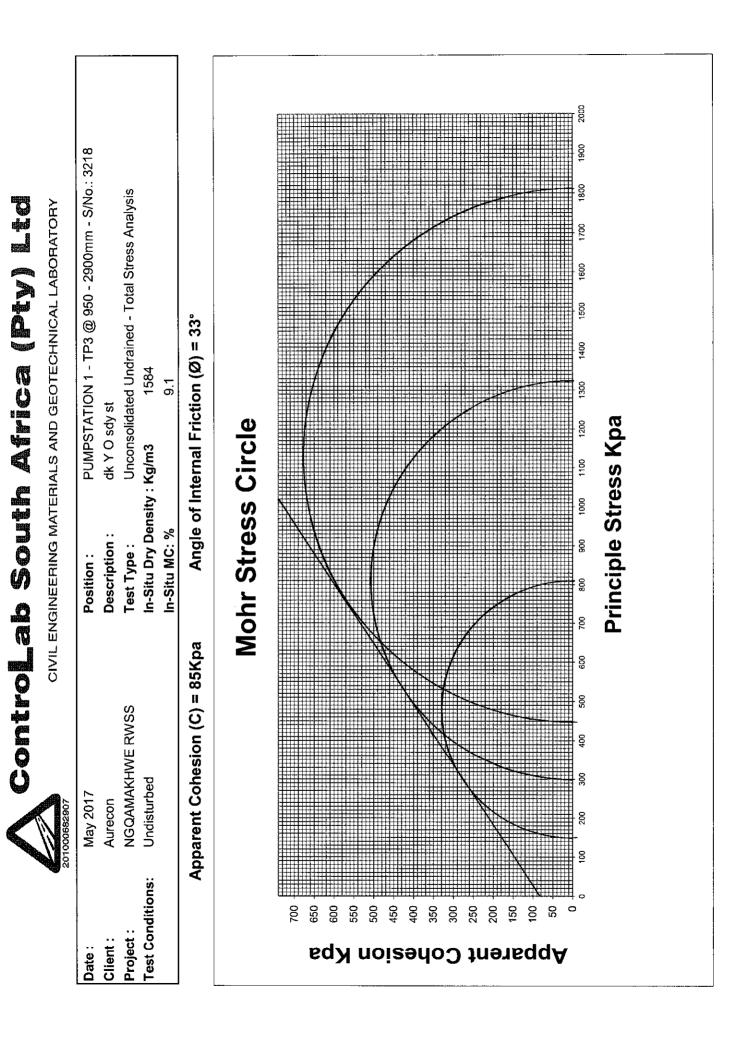
SAMPLE NO:	3400	3402	3404	 	
POSITION / CHAINAGE	PS1 / TP 1	PS1/TP2	PS1 / TP 3		
	P	UMP STATION	1		
DEPTH	600 - 2900	1200 - 2700	950 - 2900	 	
DESCRIPTION	It R	lt R	lt R		
	sdy st	sdy st	sdy st		

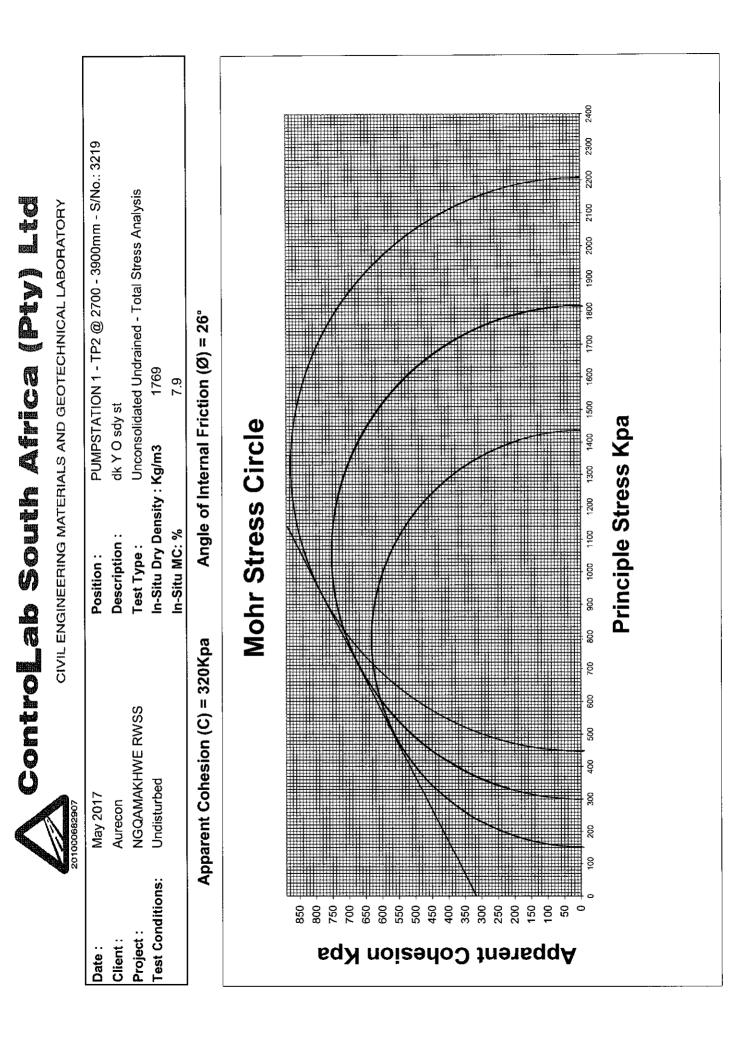
Sieve Analysis (M	et Preparation)	TMH1 - Method A1 (a)

	Sieve A	nalysis (Wet Prepar	ation) TMH1 - Meth	od A1 (a)	
% PASSING 75 mm					
63 mm					
53 mm					
37.5 mm					
26.5 mm					
19 mm					
13.2 mm	100	100			
4.75 mm	99	98			
2.00 mm	99	98	100		
0.425 mm	98	97	98		
0.075 mm	51.0	48.5	52.9		
	· •	Soil Mortar Analysi	s - TMH1 - Method	A5	
COURSE SAND (%)	1	1	2		
FINE SAND (%)	47	49	45		
SILT / CLAY (%)	52	49	53		
GRADING MODULUS	0.52	0.57	0.49		
	A	tterberg Limits - TM	H1 - Methods A2, A	3, A4	
LIQUID LIMIT (%)	20	20	21		
PLASTICITY INDEX (%)	6	5	8		
LINEAR SHRINKAGE (%)	3.5	2.0	4.5		
	sity & Optimum Moi	isture Content - TMI	11 - Method A7 / Ca	lifornia Bearing R	atio - TMH1 - Method A8
Maximum Dry Density (kg/m ³)	1934	1920	1924		
Optimum Moisture Content (%)	11.1	10.7	12.2		
C.B.R. @ 100% COMPACTION	63	55	61		
C.B.R. @ 98 % COMPACTION	50	40	43		
C.B.R. @ 95 % COMPACTION	38	26	25		
C.B.R. @ 93 % COMPACTION	29	18	12		
C.B.R. @ 90 % COMPACTION	20	12	10	_ _	
SWELL @ 100% COMP. (%)	0.40	0.60	0.60		-
T R H 14 CLASSIFICATION	<u>G8</u>	G8	G8		
The above test results are pertinent to the si Controlab shall not be liable for erroneous te consent of Controlab.	amples tested only. Wh esting or reporting there	ile the tests are carried o of, This report may not b	eut according to recogr e reproduced except in	hized standards, n full withour prior	Technical Signatory:
Remarks:					
Sample Delivered by Customer					
Sampled by Controlab					Page 1 of 2

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES To 2005 Accredited Laboratory

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia


CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214
ATT :	Mr D Luhring

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-29 DATE REPORTED: 2017-05-30 TEST REPORT NO.: MT 32019

r(j) FOUNDATION INDICATOR REPORT 3406 3407 3408 SAMPLE NO PS1 / TP 4 PS1 / TP 5 PS1 / TP 6 POSITION PUMP STATION 1 1200 - 3900 400 - 900 500 - 2900 DEPTH It R lt R lt R DESCRIPTION sdy st high weath sdy st Ss + sdy st SIEVE ANALYSIS % PASSING SIEVES: Method :TMH1 A1(a) & A5 % PASSING 75 mm 100 37.5 mm 96 19 mm 100 95 9.5 mm 95 100 99 4.75 mm 94 99 98 2.36 mm 93 99 98 1.18 mm 99 98 92 0.600 mm 91 98 97 0.425 mm 93 88 95 0.300 mm 70 69 67 0.150 mm 38.3 39.1 39.1 0.075 mm 0.6 0.7 0.8 GRADING MODULUS HYDROMETER ANALYSIS: Method ASTM D422 35 33 34 0.06 mm 23 18 21 0.02 mm 12 16 15 0.006 mm 12 10 14 0.002 mm ATTERBERG LIMITS: Method: TMH1 A2 ; A3 & A4 22 23 22 LIQUID LIMIT 8 7 8 PLASTICITY INDEX 3.5 3.5 LINEAR SHRINKAGE 3.0 PREDICTION OF HEAVE (VAN DER MERWE METHOD) 6.0 8.0 8.0 PI WHOLE SAMPLE LOW LOW LOW POTENTIAL EXPANSIVENESS Maximum Dry Density & Optimum Moisture Content - TMH1 - Method A7 / California Bearing Ratio - TMH1 - Method A8 Maximum Dry Density (kg/m³) 1947 1951 1917 11.0 11.6 10.9 **Optimum Moisture Content (%)** C.B.R. @ 100% COMPACTION 50 60 68 43 44 50 C.B.R. @ 98 % COMPACTION 28 32 C.B.R. @ 95 % COMPACTION 31 23 24 21 C.B.R. @ 93 % COMPACTION 15 18 13 C.B.R. @ 90 % COMPACTION 0.40 0.40 0.70 SWELL @ 100% COMP. (%) G8 G8 G8 T R H 14 CLASSIFICATION The above test results are pertinent to the samples received and tested only Technical Signatory: While the tests are carried our according to recognized standards Controlab shall not be liable for erroneous TAtterbur testing or reporting thereof. This report may not be reproduced except in full without prior consent of Controlab.

Remarks:

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CONSOLIDATION TEST

SUMMARY OF READINGS PROJECT NO: MT32019

SAMPLE NO : 3218

OEDOMETER NO: 3

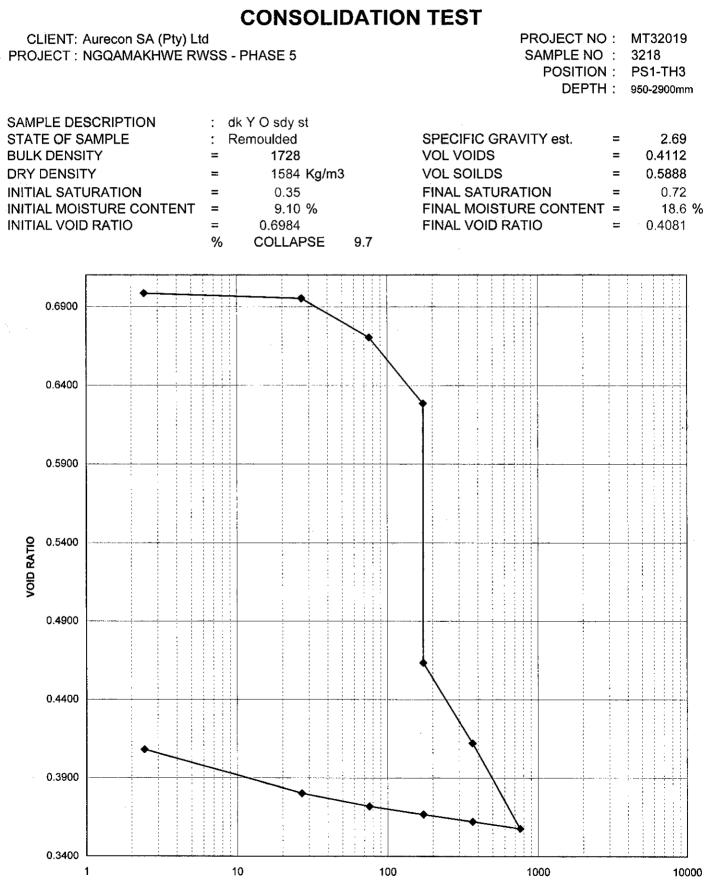
BEAM RATIO: 11

POSITION: PS1-TH3 DEPTH: 950-2900mm

CLIENT: Aurecon SA (Ptv) Ltd **PROJECT : NGQAMAKHWE RWSS - PHASE 5**

INITIAL DIAL READING = 55.947 mm **RING DIAMETER =** 75 mm

> H1 = 19 mm $H_{s} = 11.1872 \text{ mm}$ Dial Gauge Div = 1


BEAM COMMENTS PRESSURE DIAL UNCORRECTED MACHINE CORRECTED HEIGHT VOID CORRECTION DEFLECTION CHANGE RATIO READING DEFLECTION LOAD (mm). (kg) (Kpa) (mm)(mm) (mm) 👘 (mm) 2.44 0.000 0.000 0 19.000 0.6984 0.1 55.947 1.1 26.87 55.911 0.036 0.000 -0.036 18.964 0.6952 0.000 -0.312 18.688 0.6705 3.1 75.72 55.635 0.312 7.1 173.42 55.163 0.784 0.000 -0.784 18.216 0.6283 16.370 7.1 SAT 173.42 53.317 2.630 0.000 -2.630 0.4633 15.798 3.202 -3.202 0,4122 15.1 52,745 0.000 368.83 52.140 3.807 31.1 759.64 0.000 -3.807 15.193 0.3581 15.243 0.3625 52.190 3.757 0.000 -3.757 368.83 15.1 15.293 0.3670 7.1 173.42 52.240 3.707 0.000 -3.707 3.1 75.72 52.297 3.650 0.000 -3.650 15.350 0.3721 15.442 26.87 52.389 3.558 0.000 -3.558 0.3803 1.1 0.000 2.44 52.700 3.247 -3.247 15.753 0.4081 0.1

> % COLLAPSE 9.7

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

EFFECTIVE NORMAL STRESS (kPa)

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CONSOLIDATION TEST

SUMMARY OF READINGS PROJECT NO : MT32019

SAMPLE NO: 3219

OEDOMETER NO: 3

BEAM RATIO: 11

POSITION: PS1-TH2

DEPTH: 2700-3900mm

CLIENT: Aurecon SA (Pty) Ltd **PROJECT : NGQAMAKHWE RWSS - PHASE 5**

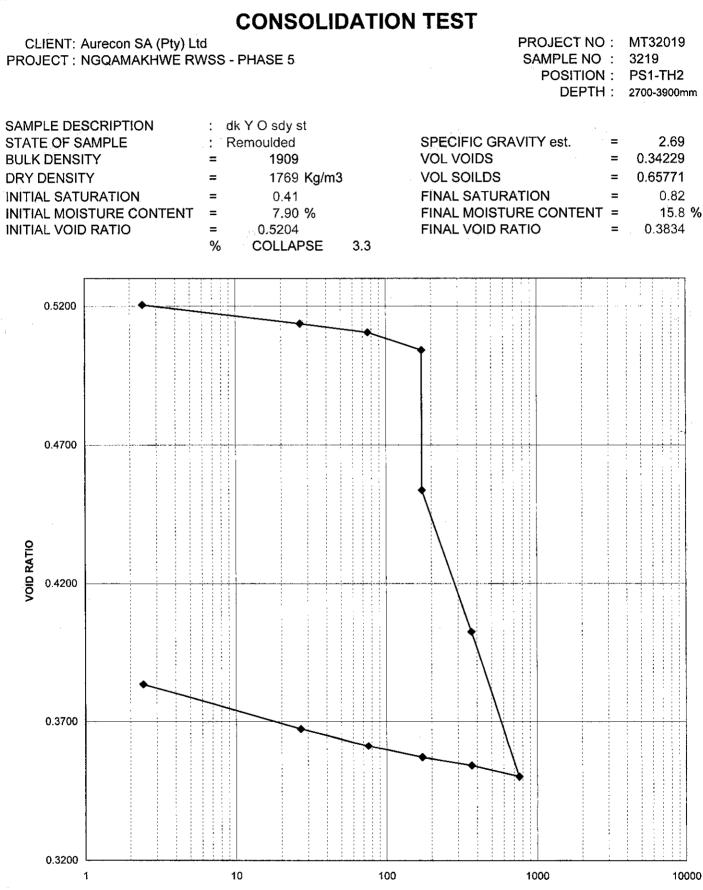
INITIAL DIAL READING = 18.667 mm RING DIAMETER = 75 mm

> H1 = 19 mm

> $H_s = 12.4964 \text{ mm}$

1

Dial Gauge Div =


BEAM	COMMENTS	PRESSURE	DIAL	UNCORRECTED	MACHINE	CORRECTED	HEIGHT	VOID
LOAD			READING	DEFLECTION	CORRECTION	DEFLECTION	CHANGE	RATIO
(kg)		(Kpa)	(mm)	(mm)	(mm)	(mm)	(mm)	
0.1		2.44	18.667	0.000	0.000	0	19.000	0.5204
1.1		26.87	18,583	0.084	0.000	-0.084	18.916	0.5137
3.1		75.72	18.544	0.123	0.000	-0.123	18.877	0.5106
7.1		173.42	18.464	0.203	0.000	-0.203	18.797	0.5042
7.1	SAT	173.42	17.833	0.834	0.000	-0.834	18.166	0.4537
15.1		368.83	17.194	1.473	0.000	-1.473	17.527	0.4026
31.1		759.64	16.542	2.125	0.000	-2.125	16.875	0.3504
15.1		368.83	16.592	2.075	0.000	-2.075	16.925	0.3544
7.1		173.42	16.629	2.038	0.000	-2.038	16.962	0.3573
3.1		75.72	16,680	1.987	0.000	-1.987	17.013	0.3614
11		26.87	16.754	1.913	0.000	-1.913	17.087	0.3674
0.1		2.44	16.954	1.713	0.000	-1.713	17.287	0.3834
			· · ·					
		,			···· *			
				····				
								
,		ļ						l
		ļ						
			1					

% COLLAPSE 3.3

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

EFFECTIVE NORMAL STRESS (kPa)

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

	urecon SA	• •		PROJECT: NGQAMAKHWE RWSS - PHASE 5							
	O Box 195	53									
	ECOMA				DAT	E TESTED: 2017-05-16					
	214					EPORTED:					
	Ir D Luhring	-		:		PORT NO.: MT32019	- we define				
		傳輸 e PI	NHOLE	TEST -	ASTM	04221-90 METHOD					
SAMPLE NO	:	3217				DRY DENSITY (Kg/m3):	1462				
SOURCE:		RESEVOIR	k - TP5 @ 3	300 - 100	mm	MC %:	30.8				
TEST CONDI	TIONS:	Remoulde	ed at In-Si	tu Densit	у	DESCRIPTION: dk G cl					
			ow	/ s/li	ATE		J ZE				
TIME	HEAD	PARAN	METERS	FLOW ATE ml	FINAL OWRA	TURBIDITY FROM SIDE	OLE SIZ AFTER TEST				
		ml.	sec.	<u></u>	FINAL FLOWRATE ml/s		HOLE SIZE AFTER TFST				
0	55mm	0	60	0.000							
		5	120	0.042	4						
		10	180	0.056	4						
		20	240	0.083	4						
5min		28	300	0.093							
10min		30	600	0.050	0.050						
AVERAGE F	LOWRATE	30	600	0.046		COMPLETELY CLEAR	COLLAPS				
	100				-						
0	180mm	0	60	0.000	-						
		0	120	0.000	4						
		0	180 240	0.000	{						
5min		0	300	0.000	-						
10min	·	· 0	600	0.000	0.000						
1011111			000	0.000							
AVERAGE F	LOWRATE	0	600	0.000		COMPLETELY CLEAR	COLLAPS				
] [
0	385	0	60	0.000							
· · · · · · · · · · · · · · · · · · ·		0	120	0.000	4						
		0	180	0.000							
Emin		0	240	0.000	4		1				
5min 10min		0	300	0.000							
1011111	<u></u>	<u> </u>	600	0.000	0.000						
				·							
AVERAGE F	LOWRATE	0	600	0.000		COMPLETELY CLEAR	COLLAPS				
				DISPER	RSIVE G	RADE CLASSIFICATION	ND1				
n, man, <u>−</u>						Technical Signatory					

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mihatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA				PROJECT: NGQAMAKHWE RWSS - PHASE 5						
	P O Box 195	53			DATE TENTED, 0017 05 10						
	TECOMA			DATE TESTED: 2017-05-16							
ATT.	5214 Mr D Luhring				DATE REPORTED: TEST REPORT NO.: MT32019						
ATT:				TEGT		1 P					
<u> </u>			NHULE	E9	ASTIN	D4221-90 METHOD					
SAMPLE N	10:	3218				DRY DENSITY (Kg/m3):	1584				
SOURCE:		PUMPSTA		_			9.1				
TEST CON	DITIONS:	Remoulde	ed at In-Sit	tu Densit	У	DESCRIPTION: dk Y O sdy	st				
·		FLOW PARAMETERS		l I/s	FINAL FLOWRATE ml/s		ZE				
TIME	HEAD			FLOW ATE ml		TURBIDITY FROM SIDE	OLE SIZ AFTER TEST				
		ml.	sec.	FLOW RATE ml/s	E 5 a		HOLE SIZE AFTER TEST				
0	55mm	0	60	0.000							
		0	120	0.000							
	1	0	180	0.000							
		0	240	0.000	1						
5min		0	300	0.000							
10min		0	600	0.000	0.000						
					1						
AVERAG	E FLOWRATE	0	600	0.000		COMPLETELY CLEAR	COLLAPSE				
0	180mm	0	60	0.000							
		0	120	0.000							
		0	180	0.000							
		0	240	0.000							
5min		0	300	0.000	.						
10min		0	600	0.000	0.000						
							· .				
	E FLOWRATE	0	600	0.000		COMPLETELY CLEAR					
AVENAG		0	000	0.000	{	COMPLETELT CLEAR	COLLAPSE				
0	385	0	60	0.000							
		0	120	0.000	ţ						
		0	180	0.000	1						
		0	240	0.000		i					
5min		0	300	0.000	1 1						
10min		0	600	0.000	0.000						
					1						
]						
AVERAG	E FLOWRATE	0	600	0.000		DARK	COLLAPSE				
				DISPER	SIVE G	GRADE CLASSIFICATION	02				
						Technical Signatory	: JAtterbury				

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA P O Box 195	• •		PROJECT: NGQAMAKHWE RWSS - PHASE 5						
	TECOMA			DATE TESTED: 2017-05-16						
	5214 DATE REPORTED:									
ATT:	Mr D Luhring	9			TEST RI	EPORT NO.: MT32019				
	C	Pl	NHOĽE	TEST -	ASTM	D4221-90 METHOD				
	10:	3219		-na e az	00 000	DRY DENSITY (Kg/m3):	1769			
SOURCE:			ATION 1 - T			0mm MC %: DESCRIPTION: dk Y O sdy	7.9			
TEST CON			ed at In-Sit							
TIME	HEAD	FLOW PARAMETERS		FLOW RATE ml/s	FINAL FLOWRATE ml/s	TURBIDITY FROM SIDE	HOLE SIZE AFTER TEST			
		ml.	sec.	RAT			[→] ¥i			
0	55mm	0	60	0.000		<u></u>				
		0	120	0.000						
		0	180	0.000]					
		0	240	0.000]					
5min		0	300	0.000						
10min		0	600	0.000	0.000					
						······································				
AVERAG	E FLOWRATE	0	600	0.000		COMPLETELY CLEAR	COLLAPSE			
0	180mm	0	60	0.000	- 1		· · · · · · · · · · · · · · · · · · ·			
0	100000	0	120	0.000	-					
		0	120	0.000	-		1			
		0	240	0.000	1					
5min		0	300	0.000						
10min		0	600	0.000	0.000					
			1				i'.			
AVERAG	E FLOWRATE	0	600	0.000		COMPLETELY CLEAR	COLLAPSE			
0	385	0.	60	0.000	-					
		0	120	0.000			1 1			
		0	120	0.000						
<u> </u>		0	240	0.000	1					
5min		0	300	0.000	1					
10min		5	600	0.008	0.008					
		-	600	0.001	-					
AVERAG	E FLOWRATE	5	600	0.001		VERY DARK	COLLAPSE			
				DISPEF	RSIVE G	GRADE CLASSIFICATION	D1/D2			
L <u></u>						na na na na				
						Technical Signatory				
							JAtterbury			

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT: Aurecon SA (Pty) Ltd P O Box 19553 TECOMA 5214 ATT : Mr D Luhring **PROJECT: NGQAMAKHWE RWSS - PHASE 5**

DATE.: 2017-05-18

REF NO.: MT32019

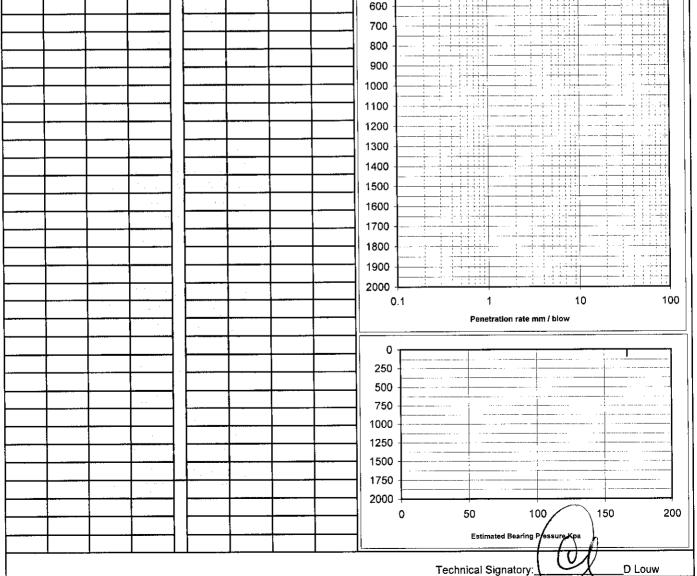
Determination of Crumb Test

SAMPLE NO.	POSITION	SOLUTION	CRUMB CONDITION	TIME	CLASSIFICATION
-				10 min	1
3217	RESEVOIR TP5 @ 300 - 1100mm	0.001N NaOH	AIR DRIED	2 hrs	1
				>16 hrs	1
1 ¹			AIR DRIED	10 min	1
3218	PUMPSTATION 1 TP3 @ 950 - 2900mm	0.001N NaOH		2 hrs	1
				>16 hrs	1
				10 min	1
3219	PUMPSTATION 1 TP2 @ 2700 - 3900mm	0.001N NaOH	AIR DRIED	2 hrs	1
		<u> </u>		>16 hrs	1
	: 				
		·····			

GRADE CLASSIFICATION FOR A CRUMB TEST (WALKER, 1997)

GRADE	REACTION	DESCRIPTION						
1	No Reaction	Crumbs may slake, but no sign of cloudiness by colloids in suspension.						
2	Slight Reaction	Bare hint of cloudiness in water at surface of crumb.						
3	Moderate Reaction	Easily recognisable cloud of colloids in suspension, usually spreading out in thin streaks on bottom of beaker.						
4	Strong Reaction	Colloid cloud covers nearly the whole bottom of the beaker, usually as a thick skin						

Technical Signator


JAtterbury

18

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

CLIE	NT:	Aurecon SA (Pty) Ltd PO Box 19553							PROJECT:	Ngqamakhwe RWSS:			
										Phase 5			
		TECO	MA										
		5214							REF:	MT32019	MT32019		
ATT:		Mr D Luhring							DATE:	2017-04-26	2017-04-26		
			DY	NAI	NIC .	СС	ONE	PEN	IETROM	ETER DAT	4		
POSI	TION:	PS1 TP 1 S 32°02'07.3" E 27°49'36.3"							REMARKS: Refusal @ 90mm				
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth	(mm) Cumutalive	No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0				
0				1 [300			in trati	
90	10	9	25						400				
									500				
				11					600	/ / / / / / / / / / / / / / / / /			
				┛┝━━	<u> </u>	_							
					· · · · · ·				700				
			· · · · ·		· · · · · · · · · · · · · · · · · · ·				800				

HEAD OFFICE : 1 Alfred Road, Vincent, 5247, Tel: 043 726 7859, Fax: 043 726 7426

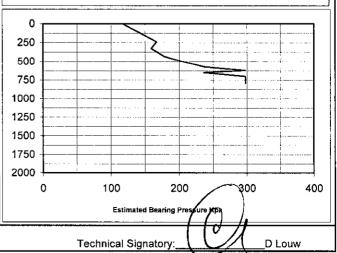
CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

040 740 0042 D O Bey 346 East London 5200

Technical Signatory

D Louw


_

	CENTRA OTHER E	L LABOR	ATORY : 10 DFFICES: 0) St Pauls R Cape Town, I	oad, East L Kokstad, Mt	ondon, 520 hatha, Que	01, Tel: 04: enstown, l	3 722 5420 Lusaka - Za	i / 722 8565, Fa ambia	ax: 043 743	9942, P O Bo	ox 346, East London, 5	5200
5214 Mr D Luhring REF: DATE: MT32019 2017-04-26 DYNAMIC CONE PENETROMETER DATA POSITION: PS1 TP 2 S 32'02'07.4" E 27'4936.8" ReMARKS: Refusal @ 130mm 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 110 11 20 10 0<	CLIEI	NT:	PO Bo	x 19553					PROJECT	т:			
BORNALIC CONE PENETROMETER DATA POSITION: PS1 TP 2 S 32*0207.4* E 27*49'38.8* Refusal @ 130mm Image: State of the state of	ATT.		5214										
POSITION: PS1 TP 2 S 32*02'07.4" REMARKS: Refusal @ 130mm					VAMI	CC	ONE	PEN		MET	····•	· · · · · · · · · · · · · · · · · · ·	
in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview in interview <td< td=""><td>POSI</td><td>TION:</td><td></td><td>P 2</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>	POSI	TION:		P 2						-			
0 0 110 11 20 130 20 2 >110 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>Depth (mm)</td><td>Cumutalive No. Blows</td><td></td><td>11</td><td>· [</td><td></td><td>Penetration Rate (mm)</td><td>Estimated Insitu CBR</td><td>100</td><td></td><td></td><td></td><td></td></t<>	Depth (mm)	Cumutalive No. Blows		11	· [Penetration Rate (mm)	Estimated Insitu CBR	100				
130 20 2 >>110 500	· · · ·	_							_1 -				
800 900 900 1000 1000 1000 1100 1200 1100 1300 1100 1500 1100 1600 1100 1600 1100 1600 1100 1000 11000 1000	130	20	2	>110					600 -				
Image: constraint of the second se									900				
Image: state of the state o									1100				
1700 1800 1900 2000 0 1									1400				
1900 2000 0.1 10 250 500 750 1000 1250 1250 1250 1500 1250 1500 1250 1500 1500 1750 2000									1700 -				
O Penetration rate mm / blow O 250 O 250 O 500 O 500 O 1000 I I I <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2000</td><td></td><td></td><td></td><td></td></t<>									2000				
250 500 500 750 1000 1250 1000 1250 1500 1500 1750 1750 2000								-			-		100
750 1000 1250 1500 1750 1750									250				
									- 750 - 1000 -	· · · · · · · · · · ·		·····	
									1500				
Estimated Bearing Pessure Kpa									11				300 400

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

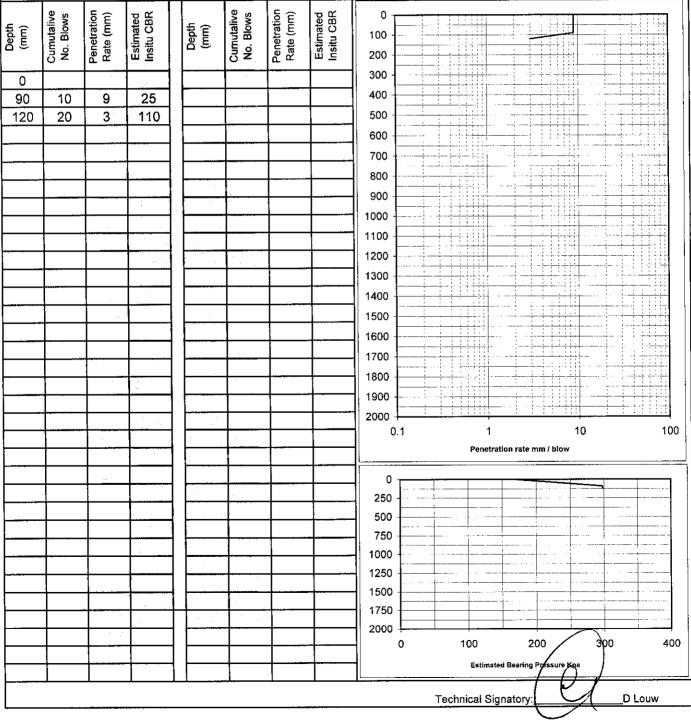
201000682	907					www.c	ontrolab.c	o.za				
CENTRA	L LABOR/	ATORY : 10	St Pauls F	Roa	ad, East Lo	ondon, 52	9, Fax: 043 01, Tel: 043 eenstown, I	3 722 5420	0 / 722 8565, F	Fax: 043 743 9942, PO	Box 346, East London, 5	200
CLIEN	CLIENT: Aurecon SA (Pty) Ltd PO Box 19553 TECOMA		y) Ltd				PROJEC		Ngqamakhwe RWSS: Phase 5			
ATT:		5214 Mr D L							REF: DATE:	MT320 2017-0		
	an teorai Se		DYI	N	AMI	C C	ONE	PEN	IETRO	OMETER L	DATA	
POSI	TION:	PS1 T S 32°02	P 3 2'07.0"	E	27°49'3	6.6"			REMAR	KS: Refusa	l @ 795mm	
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR		Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200			
0									300			
240 330	10 20	24 9	8 25				+	+)	
430	30	10	22]					600 -			
510	40	8	30	ļ					700			
570 620	50 60	6 5	45 .55						800 -	·····		· · · · · · · · · · · · · · · · · · ·
650	70	3	110	1					- 900 - 1000 -			• - • • • •
700	80	5	55									
730 760	90 100	3	110	ŀ		······			1200			· · · · · · · · · · · · · · · · · · ·
770	110	1	>110	1					1300 -			
780	120	1	>110	1				1	1400 -			
790	130	1	>110						1500 -			
795	140	0.5	>110			<u> </u>		 	1600			
			 	•			+	<u> </u>	1700			
<u> </u>							+	-	1800			
					· · · ·	· . ·			1900 -			
									2000 +	<u>·</u> <u>·</u>	10	<u> </u>
1	1	1	1	F	1	1	1	1	11 V.I	I	10	

Penetration rate mm / blow

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

CENTRA	LABOR	ATORY : 10	0 St Pauls F	247, Tel: 04 Road, East L Kokstad, Mt	ondon, 52	01, Tel: 04	3 722 5420) / 722 8565,	Fax: 043 74	13 9942, PO	Box 346, East Lo	ndon, 5200	
CLIEN	IT:		on SA (F ox 19553 MA	-				PROJE	CT:	Ngqan Phase MT320		SS:	
ATT:		Mr D L	uhring					DATE:		2017-0)4-26		
			DYI	VAMI	C CC	ONE	PEN	IETR	OME	TER L	DATA		
POSI	FION:	PS1 T S 32°0		E 27°49'3	37.1"			REMA	RKS:	Refusa	I @ 660mm		
La (La La Solution of the second	Lenetration	BH B B 22 25 55 75 55 110 75 110 75 110	Depth	Cumutalive	Rate (mm)	Estimated Instrument	0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1300 1400 1500 1600 1700 1800 1900 2000 0. 0	1	1 Penetrati	ion rate mm / blow	10	100	
								250 - 500 - 750 - 1000 - 1250 - 1500 - 1750 - 2000 -)	100	200 I Bearing Prossurg-Kp	300	400
						<u> </u>					=10	_/ _	


Technical Signatory:

D Louw

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

CENTRA	LABOR	ATORY : 10) St Pauls F	247, Tel: 043 Road, East Lo Kokstad, Mth	ondon, 520	1, Tel: 043	722 5420 /		3 743 9942, P O	Box 346, East London	n, 5200
CLIE	NT:		on SA (I ox 1955: MA	••				PROJECT:	Ngqar Phase	nakhwe RWSS 9 5	i:
ATT:		5214	uhring					REF: DATE:	MT32 2017-		
		- 	DY	NAMI	ссс	ONE	PEN	ETROM	ETER	DATA	
POSI	TION:	PS1 T S 32°0	· · ·	E 27°49'3	37.3"			REMARKS:	Refusa	al @ 120mm	
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200			
0		· ·		1.		1		300 -			

HEAD OFFICE : 1 Alfred Road, Vincent, 5247, Tel: 043 726 7859, Fax: 043 726 7426

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

					ast London, 5: 1, Mthatha, Qu				Fax: 043	743 9942	2, PO) Box 346	i, East L	ondon, 5	200	
CLIEN	łT:		on SA (1 5x 1955		td			PROJE	CT:		gqar nase	nakhw 9 5	/e RV	/SS:		
ATT:		5214	_uhring					REF: DATE:			T32()17-(019 04-26				
				NAI	MIC C	ONE	PEN		OMI				'A		•	
POSI	FION:	PS1 T S 32°0						REMA				al @ 19				
Depth (mm)	Cumutalive No. Blows	Penetration Rate (mm)	Estimated Insitu CBR	Depth	(mm) Cumutalive No. Btows	Penetration Rate (mm)	Estimated Insitu CBR	0 100 200 -				r				
0								300								
<u>130</u> 160	10 20	13	16					400 - 500 -								···· b b ··· b ·· b
190	30	3	110			_		600		······································				-		
								700 -			<u></u>			· · · · · · · · · · · · · · · · · · ·		
								- 800 - 900 -								
			:					1000			÷		· · · · · · · · · · · · · · · · · · ·		÷ = - ;	
		-						1100								
								1200 1300								
					<u>.</u>			1400								
								1500								
			· · ·					1600 -						· · ·		
		1						- 1700 - 1800 -						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		-
	<u> </u>		-					1900 -						: 		
								2000						10		
]					1	Pe	1 enetrat	ion rate m	ım / blow	10		10 [.]
		<u>"</u>		┤┝─	· · · · ·											
								250							· ···	
								500								
								- 750 - 1000 -								
								- 1000 - 1250 -								
				┥┝╴		-		- 1500 -						- · · · · · · ·	· · · · · · ·	
		:						- 1750 - 2000 -								
		-						-	5	100		20	00	30	00	40
										Es	timate	d Bearing F	ressure	PA)		
						-	-	-	-	Fechnica	l Sia	natory:	70	T	DI	.ouw

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

CLIENT : Aurecon SA (Pty) Ltd

Sample Delivered by Customer

Sampled by Controlab

X

OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

100068290

ISO/IEC 17025:2005 Accredited Laboratory

PROJECT: NGQAMAKHWE RWSS: PHASE 5

www.controlab.co.za

CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200

SAMPLE N POSITION DEPTH mm DESCRIPT % PASSING	/ CHAINAGE	3410 PS2 - TP 2 PUMP ST 110 - 350 dk R Br weath Ss +	RIALS 3413 PS2 - TP 6 ATION 2 580 - 1100 It R O					
POSITION DEPTH mm DESCRIPT	/ CHAINAGE	PS2 - TP 2 PUMP S 110 - 350 dk R Br	PS2 - TP 6 ATION 2 580 - 1100					
DEPTH mm DESCRIPT	1	PUMP S 110 - 350 dk R Br	TATION 2 580 - 1100	<u> </u>				
DESCRIPT		110 - 350 dk R Br	580 - 1100	<u></u>				
DESCRIPT		dk R Br						
	ION		<u>lt R O</u>	<u> </u>			<u> </u>	
% PASSING		weath Ss +		<u> </u>				
% PASSING			Ms +					
% PASSING		sty s	cly s					
% PASSING		Sieve	Analysis (Wet Prep	aration) TMH1	- Method A1	(a)		
	75 mm			ļ			_	
	63 mm							
	53 mm	100	100					
	37.5 mm	95	98					
	26.5 mm	81	92					
	19 mm	70	84				.	
	13.2 mm	56	66					
	4.75 mm	30	30				_	
	2.00 mm	23	16					
	0.425 mm	18	9				_	
	0.075 mm	6.8	5.8					
<u></u>			Soil Mortar Analys	sis - TMH1 - M	lethod A5		<u> </u>	
COURSE	SAND (%)	22	44	_		· ····		
FINE SAN	D (%)	49	20					
SILT / CL	AY (%)	30	36					
GRADING	MODULUS	2.52	2.69					
L		ŀ	Atterberg Limits - T	MH1 - Method	s A2, A3, A4			
LIQUID LI	MIT (%)	CBD	33					
	TY INDEX (%)	SP	16					
LINEAR S	HRINKAGE (%)	1.5	8.0					I
	Maximum Dry Den	sity & Optimum Mo	isture Content - Th	1H1 - Method	A7 / California	Bearing R	tio - TMH1 -	Method A8
Maximum	Dry Density (kg/m ³)	2061	2074					
Optimum	Moisture Content (%)	9.0	97					
C.B.R. @	100% COMPACTION	76	69					······
	98 % COMPACTION	56	49			·		
C.B.R. @	95 % COMPACTION	36	29			<u></u>	.	<u> </u>
	93 % COMPACTION	27	21					
	90 % COMPACTION	17	13			·		/
	0 100% COMP. (%)	0.10	0.50					$-+\alpha$
	CLASSIFICATION st results are pertinent to the s	G6	G6					

Page 1 of 2

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426

ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia PROJECT: NGQAMAKHWE RWSS: PHASE 5 Aurecon SA (Pty) Ltd CLIENT: DATE RECEIVED: 2017-04-30 PO Box 19553 DATE TESTED: 2017-05-29 **TECOMA** DATE REPORTED: 2017-06-02 5214 TEST REPORT NO .: MT 32019 Mr D Luhring ATT: FOUNDATION INDICATOR REPORT

CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200

		·		Cline rate		
SAMPLE NO	3409	3412	3414			
POSITION	PS 2 - TP 1		PS 2 - TP 6			
		JMP STATION				
DEPTH mm	850 - 1100		1100 - 1230			
DESCRIPTION	dk R Br	lt R O	lt R O			
	Ss +	Ss +	Ms +			
	sty s	cly s	cly s			
· · · · · · · · · · · · · · · · · · ·	SIEVE ANALYSI	S % PASSING S	SIEVES: Method :	TMH1 A1(a) &	A5	
% PASSING 75 mm	100					
37.5 mm	61	100	100			
19 mm	51	95	77			
9.5 mm	41	76	54			
4.75 mm	34	44	38			
2.36 mm	29	25	28			
1.18 mm	26	17	23			
0.600 mm	24	13	22			
0.425 mm	23	12	21			
0.300 mm	22	12	21			
0.150 mm	15	11	18			
0.075 mm	8.6	8.9	12.4	L		
GRADING MODULUS	2.4	2.5	2.4	1		
		OMETER ANALY	SIS: Method AST	M D422		
0.06 mm	8	8	10			
0.02 mm	5	5	5	l		
0.006 mm	3	3	3			
0.002 mm	3	3	2			

	ATTERBERG LIMITS: Method: TMH1 A2 ; A3 & A4										
τ	23	28	23								
INDEX	0	15	11								

PLASTICITY INDEX	8	15	11			
LINEAR SHRINKAGE	4.5	7.5	5.5			
	PREDICTI	ON OF HEAVE (V	AN DER MERW	E METHOD)		
PI WHOLE SAMPLE	2.0	2.0	1.0			
POTENTIAL EXPANSIVENESS	LOW	LOW	LOW			
Maximum Dry Densit	y & Optimum Mols	ture Content - TMH	1 - Method A7 / Ca	ilifornia Bearing Ra	atio - TMH1 - Method	48
Maximum Dry Density (kg/m ³)	2124	2120				
Optimum Moisture Content (%)	8.3	9.3				
C.B.R. @ 100% COMPACTION	81	93				
C.B.R. @ 98 % COMPACTION	60	66				
C.B.R. @ 95 % COMPACTION	40	40				
C.B.R. @ 93 % COMPACTION	32	29				
C.B.R. @ 90 % COMPACTION	20	17				$\langle - \rangle$
SWELL @ 100% COMP. (%)	0.40	0.6			/	
T R H 14 CLASSIFICATION	G6	G6				
The above test results are pertinent to the sai					Tashainal Signator	V / I
While the tests are carried our according to re					Technical Signatory	J Attenbury
testing or reporting thereof. This report may r	not be reproduced exce	apt in full without prior c	onsent of Controlab.			J Alleloury

Remarks:

LIQUID LIMIT

Samples Delivered by Customer

Sampled by Controlab: YES

HYDROMETER ANALYSIS - NON-ACCREDITED TESTS

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY. GEOTECHNICAL AND ENVIRONMENTAL SERVICES

TO308 ISO/IEC 17025:2005 Accredited Laboratory

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

PROJECT: NGQAMAKHWE RWSS: PHASE 5 CLIENT: Aurecon SA (Pty) Ltd DATE RECEIVED: 2017-04-30 PO Box 19553 DATE TESTED: 2017-05-29 **TECOMA** DATE REPORTED: 2017-06-02 5214 TEST REPORT NO .: MT32019 Mr D Luhring ATT: MATERIALS TEST REPORT 1999 1999 3415 SAMPLE NO: RES - TP 1 POSITION / CHAINAGE RESERVOIR 300 - 1600 DEPTH mm dk R Br DESCRIPTION Sh+ sty s Sieve Analysis (Wet Preparation) TMH1 - Method A1 (a) 90 % PASSING 75 mm 90 63 mm 86 53 mm 82 37.5 mm 82 26.5 mm 63 19 mm 50 13.2 mm 29 4.75 mm 20 2.00 mm 14 0.425 mm 11.2 0.075 mm Soil Mortar Analysis - TMH1 - Method A5 30 COURSE SAND (%) 14 FINE SAND (%) 56 SILT / CLAY (%) 2.55 GRADING MODULUS Atterberg Limits - TMH1 - Methods A2, A3, A4 28 LIQUID LIMIT (%) 9 PLASTICITY INDEX (%) 4.5 LINEAR SHRINKAGE (%) Maximum Dry Density & Optimum Moisture Content - TMH1 - Method A7 / California Bearing Ratio - TMH1 - Method A8 Maximum Dry Density (kg/m3) 2020 Optimum Moisture Content (%) 11.8 C.B.R. @ 100% COMPACTION 61 52 C.B.R. @ 98 % COMPACTION 41 C.B.R. @ 95 % COMPACTION

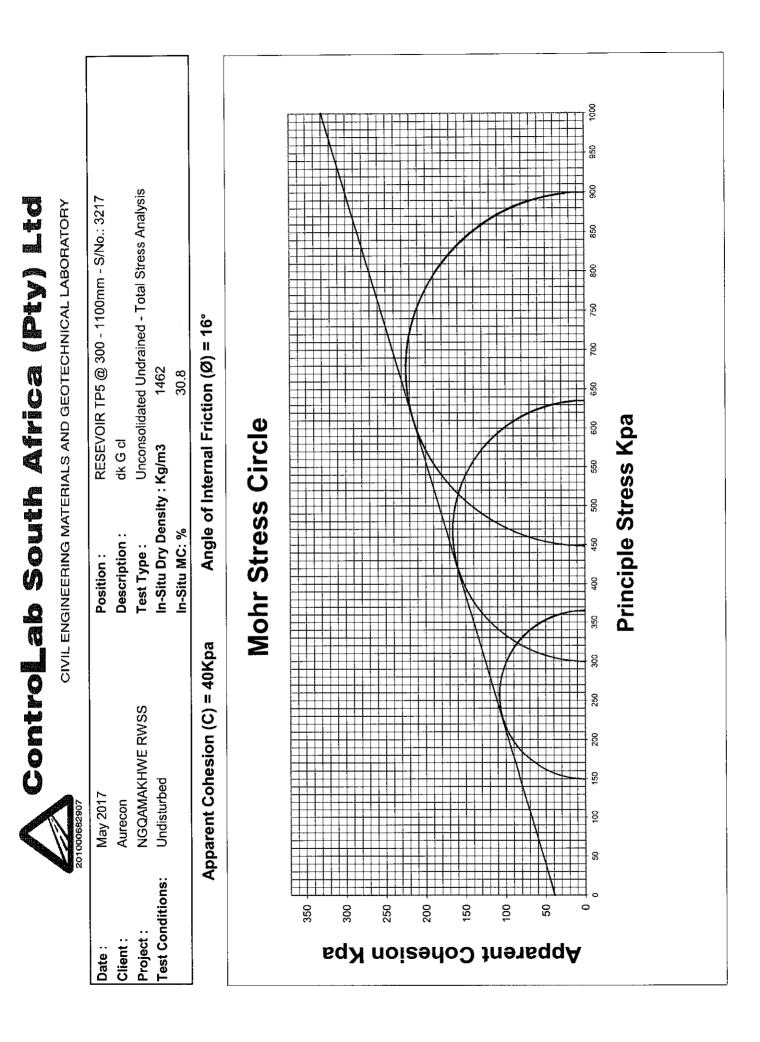
C.B.R. @ 93 % COMPACTION	32				
C.B.R. @ 90 % COMPACTION	19				
SWELL @ 100% COMP. (%)	0.40				
T R H 14 CLASSIFICATION	G6				
The above test results are pertinent to the sa Controlab shall not be liable for erroneous te consent of Controlab.	mples tested only. Wh sting or reporting there	ile the tests are carried o of. This report may not b	e reproduced excep	gnized standards, t in full withour prior	Technical Signatory: J Atterbury
Remarks: Sample Delivered by Customer]				Page 1 of 2

32

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia


CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214
ATT :	Mr D Luhring

PROJECT: NGQAMAKHWE RWSS: PHASE 5 DATE RECEIVED: 2017-04-30 DATE TESTED: 2017-05-29 DATE REPORTED: 2017-06-02 TEST REPORT NO.: MT 32019

F	OUNDAT	TION IND	ICATOR	REPORT	• •	
SAMPLE NO	3416	3417	3418	3419	3420	3421
POSITION	RES - TP 1	RES - TP 2	RES - TP 3	RES - TP 4	RES - TP 5	RES - TP 6
				RVOIR		
DEPTH mm	2500 - 3000	560-3000	180 - 3100		1100 - 2400	1050 - 2400
DESCRIPTION	Pale R	Pale R	Pale R	Pale R	Pale R	Pale R
	Sh +	Sh +	Sh +	Sh +	Ss +	Sh +
	sty s	sty s	cly s	cly s	cly s	cly s
	SIEVE ANALYSIS	S % PASSING S	IEVES: Method :	:TMH1 A1(a) & A	5	
% PASSING 75 mm		100	100	100	100	
37.5 mm	100	61	62	67	62	100
19 mm	83	48	44	50	50	76
9.5 mm	63	37	29	36	42	56
4.75 mm	46	30	22	28	37	43
2.36 mm	34	25	17	22	33	34
1.18 mm	27	21	13	18	29	28
0.600 mm	21	18	11	14	27	24
0.425 mm	19	17	10	13	26	22
0.300 mm	18	16	10	13	26	22
0.150 mm	16	16	9	12	24	20
0.075 mm	11.8	13.2	7.9	9.5	21.0	17.1
GRADING MODULUS	2.4	2.4	2.7	2.6	2.2	2.3
	HYDRO	METER ANALY	SIS: Method AS1	FM D422		
0.06 mm	11	11	7	8	19	15
0.02 mm	7	8	5	6	14	10
0.006 mm	4	4	3	4	9	7
0.002 mm	3	3	3	3	7	6
		BERG LIMITS: Me				
	30	33	35	33	42	31
PLASTICITY INDEX	8	9	11	14	10	15
LINEAR SHRINKAGE	4.5	4.5	5.5	6.5	5.0	7.0
		ON OF HEAVE (
PI WHOLE SAMPLE	2.0	2.0	1.0	2.0	3.0	3.0
POTENTIAL EXPANSIVENESS		LOW	LOW	LOW	LOW	LOW
Maximum Dry Densi	ty & Optimum Mois				io - TMH1 - Method	
Maximum Dry Density (kg/m³)		1905	2031	1997		1980
Optimum Moisture Content (%)		12.9	12.1	13.8		11.4
C.B.R. @ 100% COMPACTION		55	75	62		74
C.B.R. @ 98 % COMPACTION		50	60	52		53
C.B.R. @ 95 % COMPACTION		42	43	41		31
C.B.R. @ 93 % COMPACTION		38	31	34		22
C.B.R. @ 90 % COMPACTION		33	21	27		13
SWELL @ 100% COMP. (%)		0.30	0.60	0.70		0.40
T R H 14 CLASSIFICATION	1	G6	Gő	G6		G6
The above test results are pertinent to the sa While the tests are carried our according to r		ted only.		• ····	Technical Signator	

Remarks:

HYDROMETER ANALYSIS - NON-ACCREDITED TESTS

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CONSOLIDATION TEST

SUMMARY OF READINGS PROJECT NO: MT32019

CLIENT: Aurecon SA (Pty) Ltd **PROJECT : NGQAMAKHWE RWSS - PHASE 5**

INITIAL DIAL READING = 27.269 mm RING DIAMETER = 70.7 mm

> H1 = 19.3 mm $H_s = 10.6085 \text{ mm}$

> > 1

Dial Gauge Div =

BEAM	COMMENTS	PRESSURE	DIAL	UNCORRECTED	MACHINE	CORRECTED	HEIGHT	VOID
LOAD			READING	DEFLECTION	CORRECTION	DEFLECTION	CHANGE	RATIO
(kg)		(Kpa)	(mm)	(mm)	(mm)	(mm)	(mm)	
						_		
0.1		2.75	27.269	0.000	0.000	0	19.300	0.8193
0.1	sat	2.75	28.051	-0.782	0.000	0.782	20.082	0.8930
1.1	· · ·	30.24	27.752	-0.483	0.000	0.483	19.783	0.8648
3.1		85.21	27.278	-0.009	0.000	0.009	19.309	0.8201
7.1		195.16	26.956	0.313	0.000	-0.313	18.987	0.7898
15.1		415.06	26.436	0.833	0.000	-0.833	18.467	0.7408
31.1	1	854.86	25.707	1.562	0.000	-1.562	17.738	0.6721
15.1		415.06	25.795	1.474	0.000	-1.474	17.826	0.6804
7.1		195.16	25.945	1.324	0.000	-1.324	17.976	0.6945
3.1		85.21	26.183	1.086	0.000	-1.086	18.214	0.7169
1.1		30.24	26.521	0.748	0.000	-0.748	18.552	0.7488
0.1		2.75	27.082	0.187	0.000	-0.187	19.113	0.8017
	1							
and the second second								
- <u></u>		ļ						
n	-		[
		1	1					

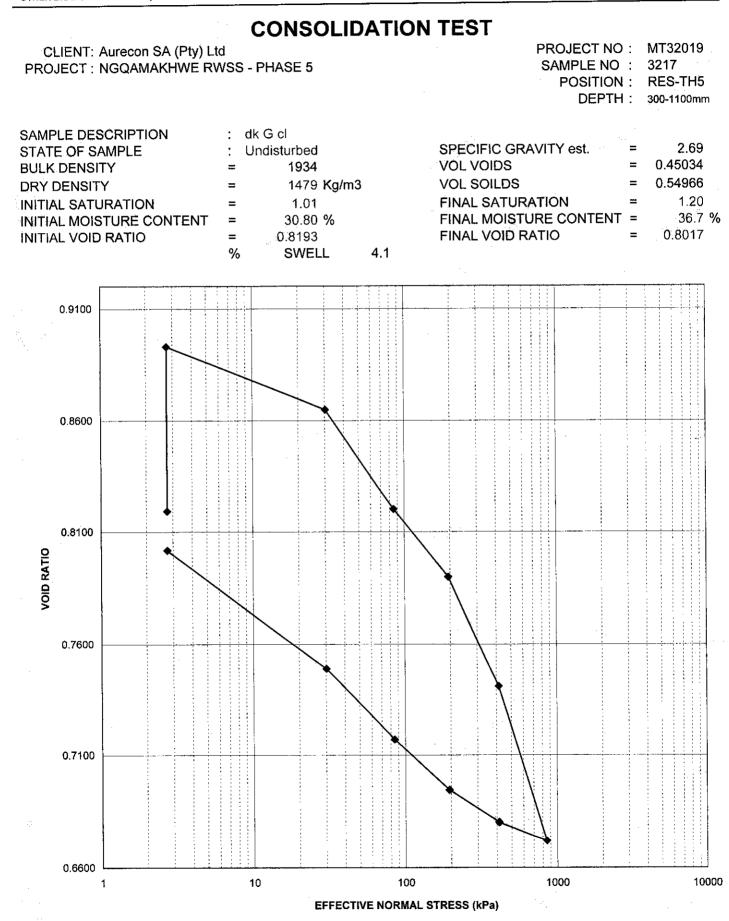
% SWELL

4.1

DEPTH: 300-1100mm

OEDOMETER NO: 1

BEAM RATIO: 11


SAMPLE NO: 3217

POSITION: RES-TH5

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

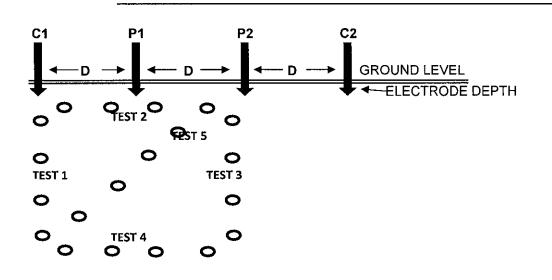
www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambla

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia


CLIENT:	Aurecon SA (Pty) Ltd PO Box 19553	
	TECOMA	
	5214	
ATT :	Mr D Luhring	

PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-04-09 REF NO.: MT32019 INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	AR-SR1			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	VERY MOIST			GPS CO-ORD: S 32°02'40.1" E 2		E 27°50'03.1"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	10.00		
2	SE	3.0	15.0	10.00		
3	SW	3.0	15.0	12.00	10.80	203.6
4	NW	3.0	15.0	12.00		
5	NW 1	3.0	15.0	10.00]	

ADDITIONAL NOTES: ALTERNATIVE ROUTE

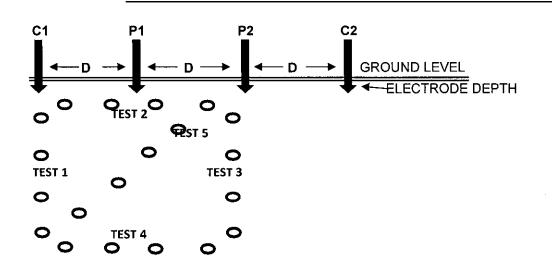
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010					
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS				
0 - 10	VERY SEVERE				
10 - 100	MODERATE TO SEVERE				
100 - 1000	MILD (IF AERATED)				
> 1000	PROBABLY NOT CORROSIVE				

Technical Signatory:

•

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-09
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	AR-SR6			TEMPERATURE:		
DESCRIPTION:	It Y Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	VERY MOIST			GPS CO-ORD:	S 32°02'54.0"	E 27°50'33.5"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SE	3.0	15.0	5.43		
2	SW	3.0	15.0	7.00		
3	NW	3.0	15.0	8.00	6.69	126.0
4	NE	3.0	15.0	7.00		
5	NE	3.0	15.0	6.00		

ADDITIONAL NOTES: ALTERNATIVE ROUTE

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

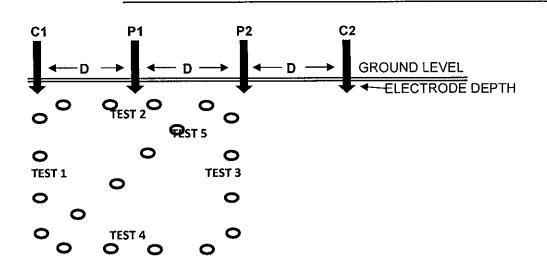
Technical Signatory:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	
	PO Box 19553	
	TECOMA	
	5214	
ATT :	Mr D Luhring	


PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-04-09 REF NO.: MT32019 INSTRUMENT S/N: DET4TC2

- 1 v

Determination of Soil Resistivity

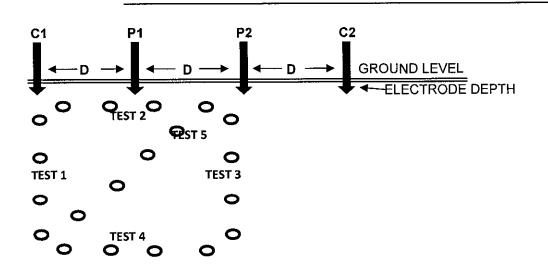
TEST POSITION	AR-SR7			TEMPERATURE:		
DESCRIPTION:	lt Y Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	VERY MOIST	· ///////		GPS CO-ORD:	GPS CO-ORD: S 32°02'49.9" E 27°50'4	
				_	1	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RE\$ISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SE	3.0	15.0	17.00	1	
2	SW	3.0	15.0	17.00]	
3	NW	3.0	15.0	12.00	14.40	271.4
4	NE	3.0	15.0	14.00]	
5	NE	3.0	15.0	12.00		

ADDITIONAL NOTES: ALTERNATIVE ROUTE

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mihatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-09
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

	Determination of Soil Resistivity	
	Dependent of a contresistivity	
1 Sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector is a sector in the sector in the sector is a sector in the sec		5 A 12

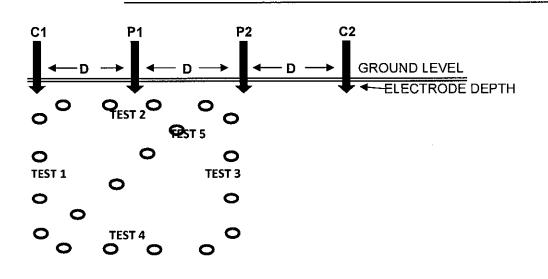
TEST POSITION	ST POSITION AR-SR8			TEMPERATURE:		
DESCRIPTION: It Y Br sty s			WEATHER COND:	COOL		
SOIL CONDITION:				GPS CO-ORD:	S 32°02'38.5"	E 27°50'50.8"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SE	3.0	15.0	9.00		
2	SW	3.0	15.0	10.00		
3	. NW	3.0	15.0	9.00	10.00	188.5
4	NE	3.0	15.0	10.00		
5	NE	3.0	15.0	12.00] .	

ADDITIONAL NOTES: ALTERNATIVE ROUTE

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-09
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	TION AR-SR9			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COOL	
SOIL CONDITION:	VERY MOIST			GPS CO-ORD:	S 32°02'47.2"	E27°51'00.2"
- =	• • • • • • • • • • • • • • • • • • • •				-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	14.00		
2	SE	3.0	15.0	14.00		
3	SW	3.0	15.0	8.40	11.68	220.2
4	NW	3.0	15.0	10.00		
5	N	3.0	15.0	12.00]	

ADDITIONAL NOTES: ALTERNATIVE ROUTE

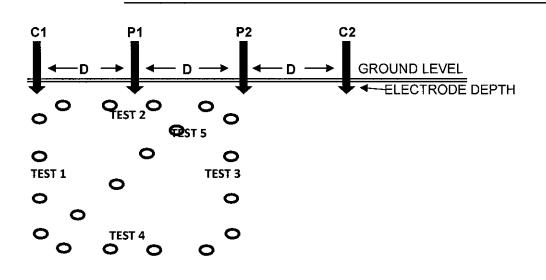
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

Technical Signatory:

C Becker

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-09
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	AR-SR10			TEMPERATURE:		
DESCRIPTION:	lt Br sty s			WEATHER COND:	WARM	
SOIL CONDITION:	VERY MOIST			GPS CO-ORD;	S 32°02'48.2"	E 27°51'08.2"
	• • • • • • • • • • • • • • • • • • • •				-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	S	3.0	15.0	6.49	· · · · · ·	
2	SW	3.0	15.0	3.82		
3	NE	3.0	15.0	8.00	6.01	· 113.3
4	SE	3.0	15.0	5.75		
5	SE	3.0	15.0	6.00		

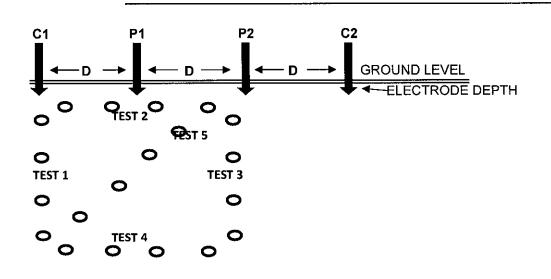
ADDITIONAL NOTES: ALTERNATIVE ROUTE

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia


CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214
ATT :	Mr D Luhring

PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-04-09 REF NO.: MT32019 INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	AR-SR12			TEMPERATURE:			
DESCRIPTION:	It Br sty s	It Br sty s			WARM		
SOIL CONDITION:	MOIST			GPS CO-ORD:	PS CO-ORD: S 32°02'56.6" E 27°5		
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m	
1	NE	3.0	15.0	5.87			
2	SE	3.0	15.0	8.00			
3	SW.	3.0	15.0	6.57	6.24	117.6	
4.	NW	3.0	15.0	4.75]		
5	NW	3.0	15.0	6.00]		

ADDITIONAL NOTES: ALTERNATIVE ROUTE

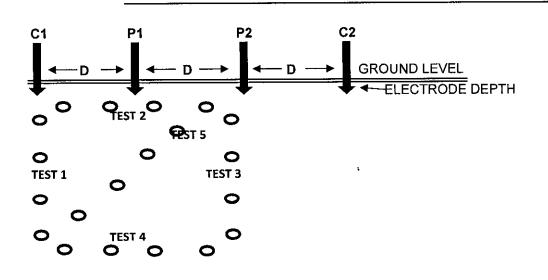
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory: 🌮

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia


CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214
ATT :	Mr D Luhring

PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-04-09 REF NO.: MT32019 INSTRUMENT S/N: DET4TC2

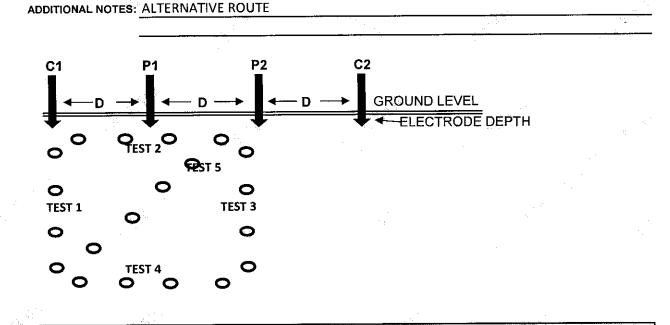
Determination of Soil Resistivity

TEST POSITION	AR-SR13			TEMPERATURE:		
DESCRIPTION:	lt Br sty s			WEATHER COND:	WARM	
SOIL CONDITION:	MOIST			GPS CO-ORD:	S 32°03'04.4"	E 27°51'20.1"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SW	3.0	15.0	16.00		
2	SE	3.0	15.0	16.00	-	256.4
3	SW	3.0	15.0	12.00	13.60	
4	NW	3.0	15.0	10.00		
5	NW	3.0	15.0	14.00		

ADDITIONAL NOTES: ALTERNATIVE ROUTE

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
1.41	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-19
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

					<i></i>	
TEST POSITION	AR - SR14	<u></u>	1000 A.	TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	MOIST			GPS CO-ORD:	S32° 03' 08.6"	E27° 51' 25.5"
		A. 13				
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SW	3.0	15.0	9.00		
2	NW	3.0	15.0	9.00		
3	NE	3.0	15.0	7.00	8.00	150.8
4	SE	3.0	15.0	7.00		
5 🔮	SW	<u>đi</u> 3.0	15.0	8,00		. ÷

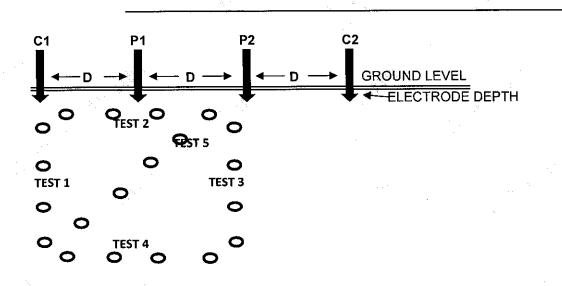
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:201			
73. 94	SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
	0 - 10	VERY SEVERE	
	10 - 100	MODERATE TO SEVERE	
	100 - 1000	MILD (IF AERATED)	
	> 1000	PROBABLY NOT CORROSIVE	

Technical Signatory

J Atterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tei: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tei: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
· .	TECOMA	DATE.: 2017-06-19
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

	1	· .				
TEST POSITION	AR - SR15		······································	TEMPERATURE:	· .	
DESCRIPTION:	lt Br sty s			WEATHER COND:	COLD	·
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32" 03' 09.8"	E27° 51' 35.0"
	L				**	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SE	3.0	15.0	2.00		
2	SW	3.0	15.0	1.57] 1 01	
3	NW	3.0	15.0	2.00	1.91	36.1
4	NE	.3.0	15.0	2.00		
5	SW	3.0	15.0	2,00		ata ¹³ te k 19

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

Technical Signator

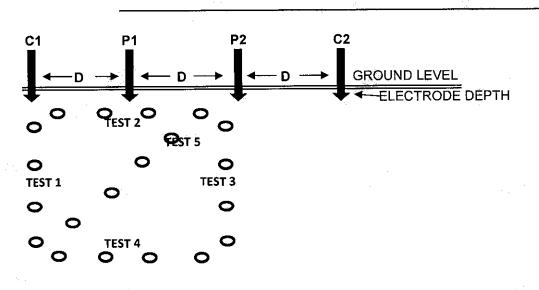
4. A. A.

20) i Qu

.

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
ration Let	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-19
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

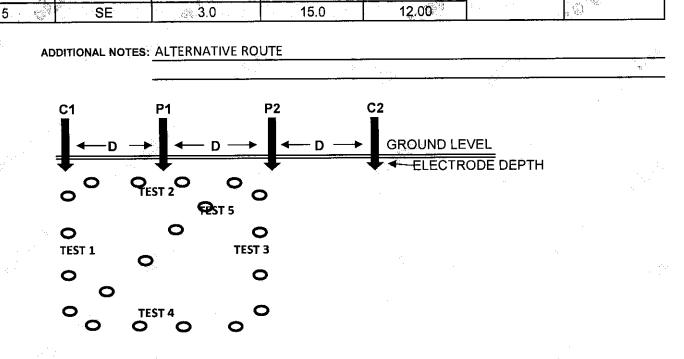
	Determination of S	Soil Resistivity	

				:		
TEST POSITION	AR - SR16			TEMPERATURE:		
DESCRIPTION:	lt Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 03' 13.2"	E27° 51' 43.6"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	1,00		
2	SE	3.0	15.0	1.00	1 20	
3	SW	3.0	15.0	2.00	1.20	22.6
4	NE	3,0	15.0	1.00		22.6
5 °	NW	@ 3.0	15.0	1,00]	

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory:__

· ...


CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
an da ba	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-19
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

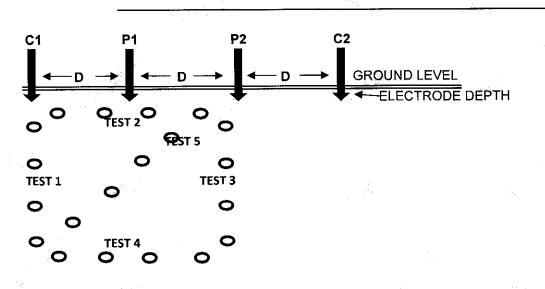
		Determina	ation of Soil F	Resistivity		
	· · · · · · · · · · · · · · · ·				.:	
TEST POSITION	AR-SR17	· · · · · · · · · · · · · · · · · · ·		TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 03' 17.1"	E27° 51' 52.1"
		n s. reg				
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (0)	APPARENT SOIL RESISTIVITY (Ω/m
1	SE N	3.0	15.0	11.12		
2	SW	3.0	5 15.0	11.27		
3	NE	3.0	15.0	12.00	11.88	223.9
4	NW	.3.0	15.0	13.00		
			45.0	40.00	1 4	1.63

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

Technical Signatory:

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
#***	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-19
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination	of Soil Resistivity
Determination	of oon resoluting

	1. A					
TEST POSITION	AR-SR18			TEMPERATURE:		
DESCRIPTION:	It Br sty s		WEATHER COND		COLD	
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 03' 18.6"	E27° 52' 01.4"
	L					
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SW	3.0	15.0 🧍	9.00		
2	NW	3.0	15.0	10.00		
3	SE	3.0	15.0	10.00	10.40	196.0
4	NE	3.0	15.0	12.00		
5 💮	SW	3.0	15.0	11.00		

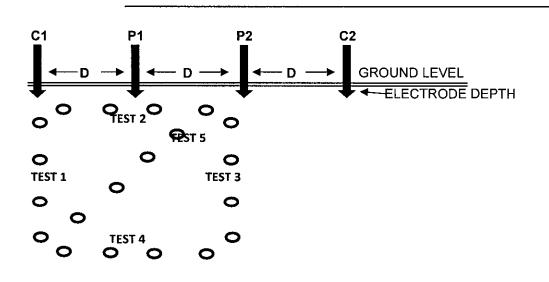
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			

Technical Signator

N. C.

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-04
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

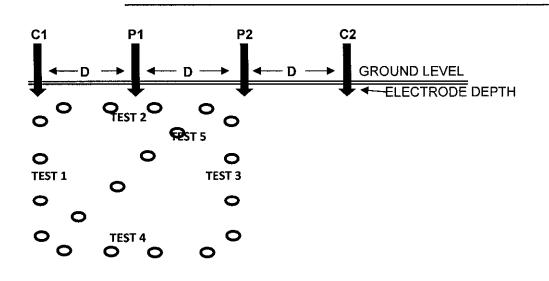
Determination of Soil Resistivity

TEST POSITION	SR1			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COOL, SUNNY	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	S 32°02'07.7"	E 27°49'36.7"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NW	3.0	15.0	3.62		
2	NE	3.0	15.0	2.73	1	
3	SE	3.0	15.0	2.63	3.29	62.0
4	SW	3.0	15.0	4.00		
5	SE	3.0	15.0	3.47	1	

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-04
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

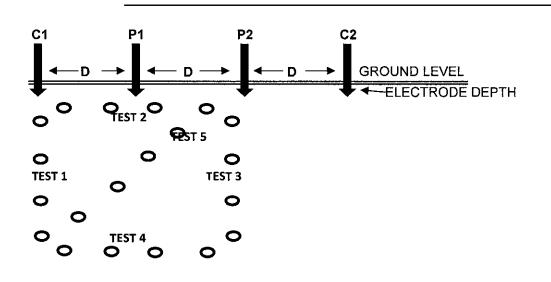
Determination of Soil Resistivity

TEST POSITION	SR2			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	нот	
SOIL CONDITION:	DRY			GPS CO-ORD:	S 32°02'11.5"	E 27°49'44.7"
	·	···· · · · · · · · · · · · · · · · · ·		•	•	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SE	3.0	15.0	9.09		
2	SW	3.0	15.0	9.00	1	
3	NW	3.0	15.0	6.00	7.62	143.6
4	NE	3.0	15.0	6.00		
5	NE	3.0	15.0	8.00	7	

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-04
	5214	REF NO.: MT32019
ATT:	Mr D Luhring	INSTRUMENT S/N: DET4TC2

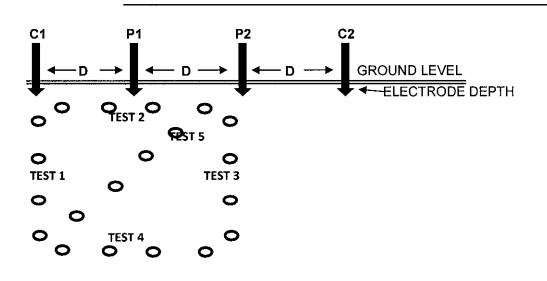
Determination of Soil Resistivity

TEST POSITION	SR3			TEMPERATURE:		
DESCRIPTION:	It Br sty s		WEATHER COND:	HOT		
SOIL CONDITION:			GPS CO-ORD:	S 32°02'18.5"	E 27°49'49.6"	
				-		
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	6.38		
2	NW	3.0	15.0	8.00		
3	SW	3.0	15.0	8.00	7.86	148.2
4	SE	3.0	15.0	7.92		
5	SW	3.0	15.0	9.00		

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100 MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

Aurecon SA (Pty) Ltd	CLIENT:
PO Box 19553	
TECOMA	
5214	
Mr D Luhring	ATT :
	PO Box 19553 TECOMA 5214

PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-04-04 REF NO.: MT32019 STRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR5			TEMPERATURE:		
DESCRIPTION:	It Br sty s DRY		WEATHER COND:VERY HOTGPS CO-ORD:S 32°02'29.2"			
SOIL CONDITION:					E 27°50'00.9"	
****	-			-		
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SE	3.0	15.0	4.00		
2	NE	3.0	15.0	5.00		
3	NW	3.0	15.0	4.00	4.80	90.5
4	SW	3.0	15.0	5.00		
5	W	3.0	15.0	6.00]	

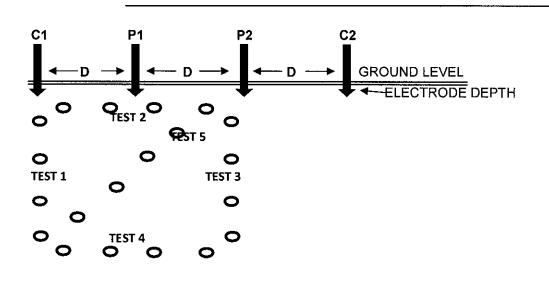
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100 MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

Technical Signatory:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mihatha, Lusaka - Zambia


CLIENT:	Aurecon SA (Pty) Ltd PO Box 19553
	5214
ATT :	Mr D Luhring

PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-04-04 REF NO.: MT32019 INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

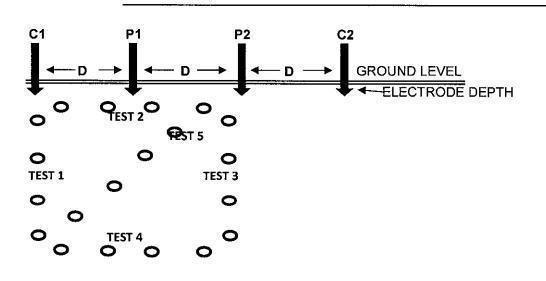
TEST POSITION	SR6			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY HOT	
SOIL CONDITION:	DRY		GPS CO-ORD:	S 32°02'34.8"	E 27°50'07.5"	
	-				-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SW	3.0	15.0	15.00		
2	NE	3.0	15.0	16,00		
3	NW	3.0	15.0	17.00	15.96	300.8
4	SW	3.0	15.0	16.00		
5	NW	3.0	15.0	15.80	1	

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT:	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

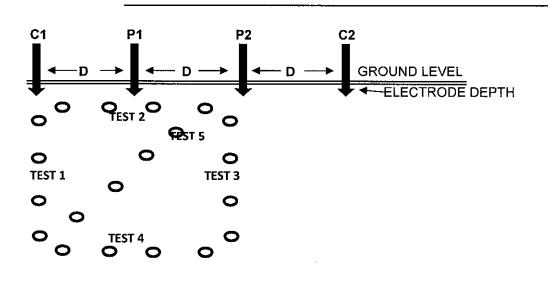
TEST POSITION	SR7			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	ION: SLIGHTLY MOIST		GPS CO-ORD:	S 32°02'40.3"	E 27°50'14.8"	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1.	SW	3.0	15.0	12.00		
2	NE	3.0	15.0	15.00		
3	NW	3.0	15.0	12.00	13.80	260.1
4	SW	3.0	15.0	16.00		
5	SW	3.0	15.0	14.00		· ·

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100 MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	
	PO Box 19553	
	TECOMA	
	5214	
ATT :	Mr D Luhring	INSTR

PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-04-05 REF NO.: MT32019 STRUMENT S/N: DET4TC2

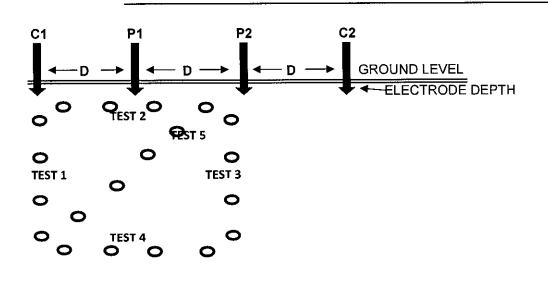
Determination of Soil Resistivity

TEST POSITION	SR9			TEMPERATURE:			
DESCRIPTION:	lt Br sty s			WEATHER COND:	COLD		
SOIL CONDITION:	SLIGHTLY MOIST		DIL CONDITION: SLIGHTLY MOI		GPS CO-ORD:	S 32°02'39.4"	E 27°50'33.0"
					-		
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m	
1	SE	3.0	15.0	14.00			
2	NE	3.0	15.0	12.00			
3	NW	3.0	15.0	11.00	13.00	245.0	
4	SW	3.0	15.0	15.00			
5	SW	3.0	15.0	13.00	1 [°]		

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS VERY SEVERE		
0 - 10			
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

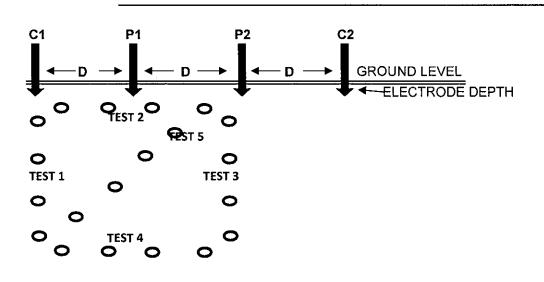
TEST POSITION	SR10			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:			GPS CO-ORD:	S 32°02'38.7"	E 27°50'42.4"	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SE	3.0	15.0	4.00		
2	NE	3.0	15.0	4.00		79.2
3	NW	3.0	15.0	4.00	4.20	
4	SW	3.0	15.0	5.00		
5	SW	3.0	15.0	4.00		ł

ADDITIONAL NOTES: PROPERTY OWNER COMPLAINED

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

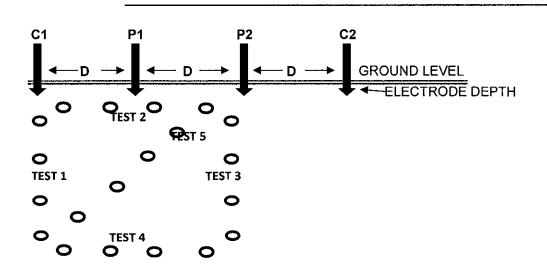
TEST POSITION	SR11			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COOL	
SOIL CONDITION:	: SLIGHTLY MOIST			GPS CO-ORD:	S 32°02'38.1"	E 27°50'52.0"
	• <u>•</u> ••••••			•		
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	19.00		
2	SE	3.0	15.0	18.00		
3	SW	3.0	15.0	19.00	17.60	331.8
4	NW	3.0	15.0	15.00	-	
5	NW	3.0	15.0	17.00		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100 MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

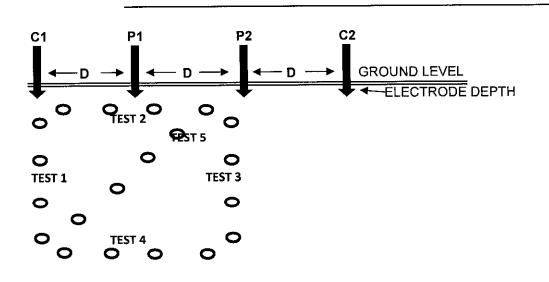
TEST POSITION	SR12			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COOL	
SOIL CONDITION:	SLIGHTLY MO	IST		GPS CO-ORD:	S 32°02'36.0"	E 27°50'59.4"
	•			•		**************************************
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	6.00		
2	SE	3.0	15.0	8.00]	
3	SW	3.0	15.0	10.00	7.60	143.3
4	NW	3.0	15.0	6.00]	
5	NW	3.0	15.0	8.00		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199;2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

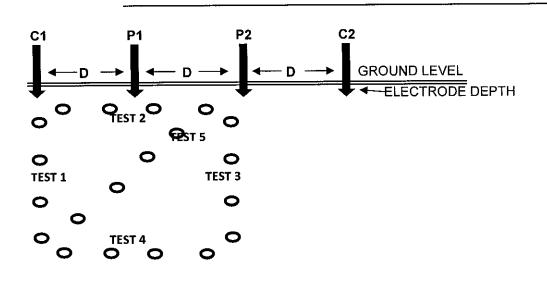
TEST POSITION	SR13			TEMPERATURE:	1	
DESCRIPTION:	lt Br sty s			WEATHER COND:	WARM	
SOIL CONDITION:	DRY			GPS CO-ORD:	S 32°02'35.8"	E 27°51'08.9"
					T	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	13.00		
2	SE	3.0	15.0	8.00		
3	SW	3.0	15.0	12.00	11.60	218.7
4	NW	3.0	15.0	14.00		
5	NW	3.0	15.0	11.00		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR14			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	НОТ	
SOIL CONDITION:	DRY			GPS CO-ORD:	S 32°02'36.0"	E 27°51'18.2"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	11.00		
2	SE	3.0	15.0	11.00		
3	SW	3.0	15.0	11.00] 11.40	214.9
4	NW	3.0	15.0	12.00		
5	NW	3.0	15.0	12.00		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m) CORROSIVENESS			
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

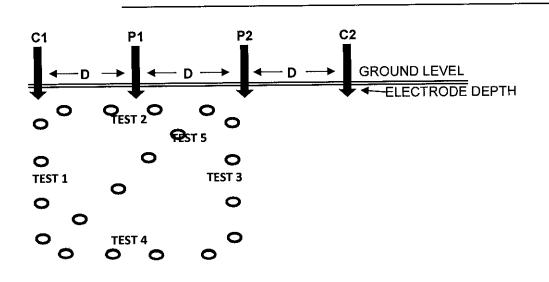
JA .

Technical Signatory:

C Becker

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR18			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	нот	
SOIL CONDITION:	DRY	······································		GPS CO-ORD:	S 32°02'55.3"	E 27°51'32.9"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NW	3.0	15.0	11.00		
2	NE	3.0	15.0	12.00		
3	SE	3.0	15.0	14.00	12.40	233.7
4	SW	3.0	15.0	13.00		
5	NE	3.0	15.0	12.00		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m) CORROSIVENESS				
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			

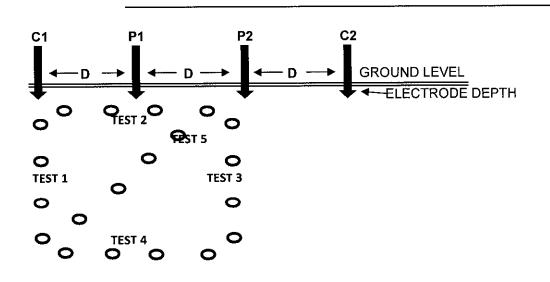
Technical Signatory:

C Becker

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia


PROJEC	Aurecon SA (Pty) Ltd	CLIENT:
	PO Box 19553	
DAT	TECOMA	
REF NO	5214	
INSTRUMENT S/	Mr D Luhring	ATT :

PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-04-05 REF NO.: MT32019 NSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR19			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY HOT	
SOIL CONDITION:	DRY			GPS CO-ORD:	S 32°03'00.2"	E 27°51'37.5"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	27.00		
2	SE	3.0	15.0	16.00	· · ·	
3	SW	3.0	15.0	18.00	19.20	361.9
4	NW	3.0	15.0	15.00		
5	NW	3.0	15.0	20.00]	

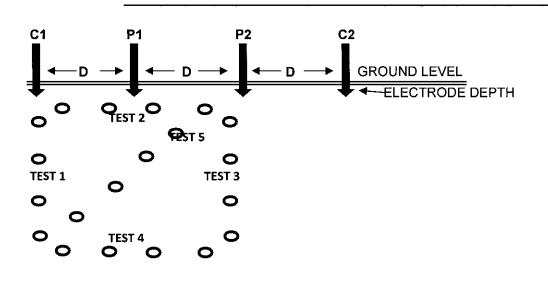
ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS VERY SEVERE		
0 - 10			
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

Technical Signatory:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR20			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY HOT	
SOIL CONDITION:	DRY			GPS CO-ORD:	S 32°03'04.8"	E 27°51'45.1"
	- ,			_	-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	9.00	· · · · ·	
2	SE	3.0	15.0	9.00		
3	SW	3.0	15.0	8.00	8.20	154.6
4	NW	3.0	15.0	7.00].	
5	NW	3.0	15.0	8.00]	

ADDITIONAL NOTES:

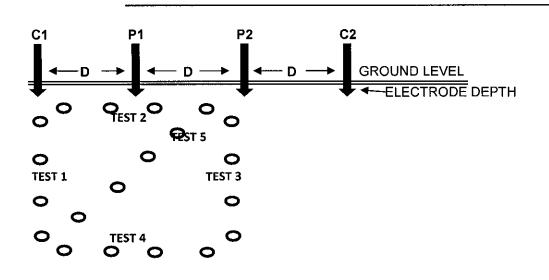
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

Technical Signatory:

C Becker

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-05
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

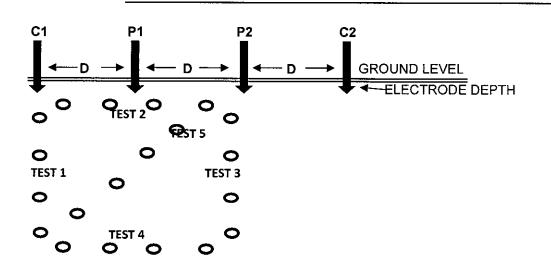
TEST POSITION	SR21			TEMPERATURE:			
DESCRIPTION:				WEATHER COND:	VERY HOT		
SOIL CONDITION:				GPS CO-ORD:	S 32°03'09.5"	E 27°51'53.0"	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m	
1	NW	3.0	15.0	3.33			
2	NE	3.0	1,5.0	4.00]		
3	SE	3.0	15.0	6.00	4.57	86.1	
4	SW	3.0	15.0	4.50]		
5	SW	3.0	15.0	5.00]		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVIT	RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS				
0 - 10	VERY SEVERE				
10 - 100	MODERATE TO SEVERE				
100 - 1000	MILD (IF AERATED)				
> 1000	PROBABLY NOT CORROSIVE				

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

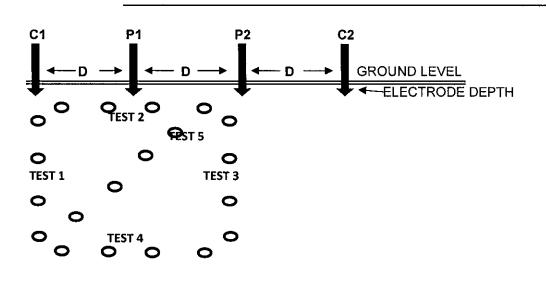
TEST POSITION	SR22			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	MOIST			GPS CO-ORD:	S 32°03'15.2"	E 27°51'59.4"
	1				· · · · · · · · · · · · · · · · · · ·	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SW	3.0	15.0	14.00		
2	NW	3.0	15.0	11.00	• •	
3	NE	3.0	15.0	15.00	12.60	237.5
4	SE	3.0	15.0	11.00		
5	SW	3.0	15.0	12.00	• · ·	

ADDITIONAL NOTES: FREQUENCY USED 50V / 128hz

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

			oil Resistivity		

TEST POSITION	SR23			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	MOIST			GPS CO-ORD:	S 32°03'18.6"	E 27°52'07.0"
				•	•	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1 : 1	NE	3.0	15.0	6.00	· · ·	1
2	SE	3.0	15.0	4.00		
3	S S	3.0	15.0	3.00	4.40	82.9
4	NW	3.0	15.0	4.00		· · ·
5	NW	3.0	15.0	5.00	1	

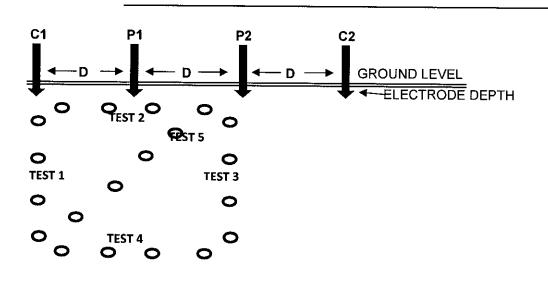
ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

Technical Signatory:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR24			TEMPERATURE:		. 1.1	
DESCRIPTION:	NOIOT			WEATHER COND:	COOL		
SOIL CONDITION:				GPS CO-ORD:	E 27°52'16.4"		
TEST NO.:	DIRECTION:	ECTION: DISTANCE BETWEEN ELECTRODES (m) DEPTH (cm)		RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)	
1	NE	3.0	15.0	21.00			
2	SE	3.0	15.0	14.00			
3	SW	3.0	15.0	16.00	16.00	301.6	
4	NW	3.0	15.0	13.00	1		
5	NW	3.0	15.0	16.00	1		

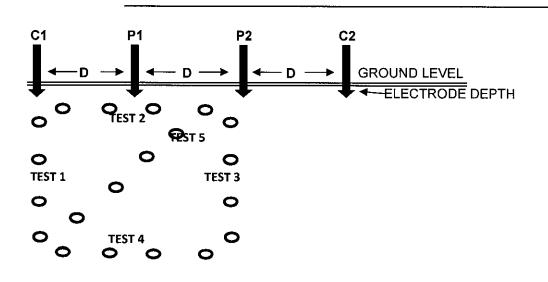
ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
CORROSIVENESS			
VERY SEVERE			
MODERATE TO SEVERE			
MILD (IF AERATED)			
PROBABLY NOT CORROSIVE			

Technical Signatory:

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT:	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR25			TEMPERATURE:		
DESCRIPTION:	It Y Br sty s			WEATHER COND:	COOL	
SOIL CONDITION:	MOIST			GPS CO-ORD:	S 32°03'21.1"	E 27°52'25.7"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	8.00		
2	SE	3.0	15.0	10.00		•
3	SW	3.0	15.0	10.00	9.60	181.0
4	NW	3.0	15.0	12.00	1	
5	NW N	3.0	15.0	8.00	1	

ADDITIONAL NOTES:

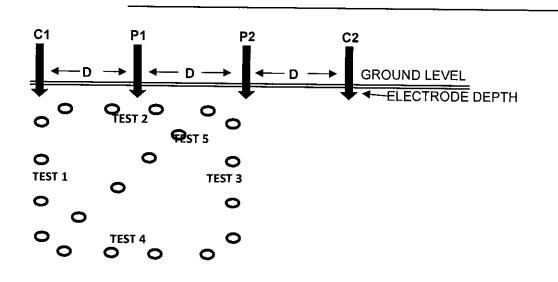
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

Technical Signatory:

 $\cdot \cdot \cdot$

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

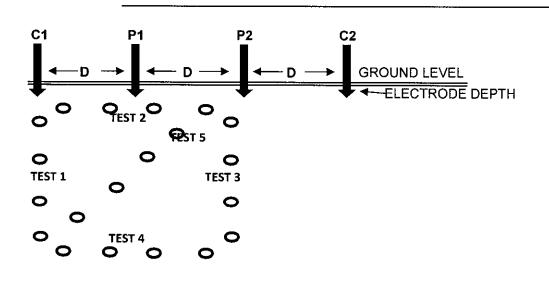
TEST POSITION	SR26			TEMPERATURE:		····-
DESCRIPTION:	ESCRIPTION: It Br sty s		WEATHER COND:	COOL		
SOIL CONDITION:	MOIST			GPS CO-ORD:	S 32°03'22.6"	E 27°52'35.1"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SE	3.0	15.0	4.00		
2	SW	3.0	15.0	3.00		
3	NW	3.0	15.0	4.00	3.80	71.6
4	NE	3.0	15.0	5.00		
5	NE	3.0	15.0	3.00	1 · · · · ·	

ADDITIONAL NOTES:

	TY AND CORROSIVENESS: AS PER SANS 10199:2010	
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

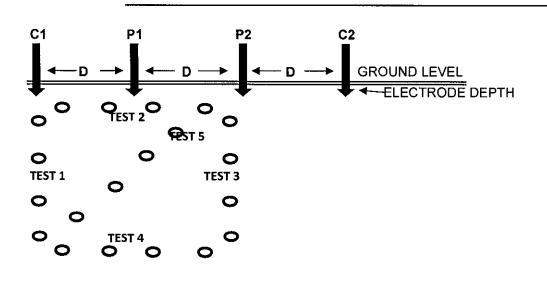
TEST POSITION	SR28			TEMPERATURE:			
DESCRIPTION:	It Br sty s			It Br sty s WEATHER CON	WEATHER COND:	COOL	
SOIL CONDITION:	MOIST			GPS CO-ORD:	S 32°03'25.8"	E 27°52'54.0"	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL. RESISTIVITY (Ω/m)	
1	NE	3.0	15.0	3.32		· · · · · · · · · · · · · · · · · · ·	
2	SE	3.0	15.0	4.00			
3	SW	3.0	15.0	3.00	3.86	72.8	
4	W	3.0	15.0	5.00			
5	NW	3.0	15.0	4.00			

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR29	SR29				
DESCRIPTION:	It Br sty s		WEATHER COND:	COOL	*	
SOIL CONDITION:	MOIST			GPS CO-ORD:	S 32°03'27.6"	E 27°53'03.3"
	· · · · · · · · · · · · · · · · · · ·	· · · ·				
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	4.00		
2	SE	3.0	15.0	3.00		
3	SW	3.0	15.0	4.00	3.80	71.6
4	NW	3.0	15.0	5.00		
5	NW	3.0	15.0	3.00		

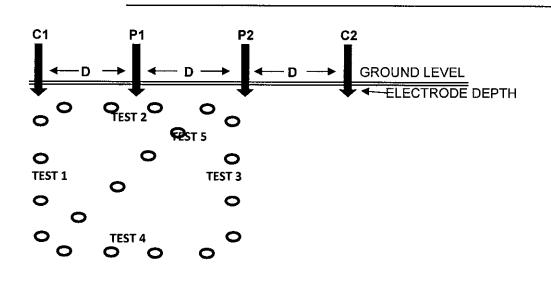
ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

tory

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

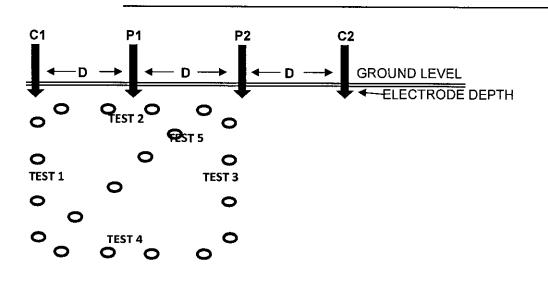
TEST POSITION	POSITION SR30			TEMPERATURE:		
DESCRIPTION:	It Br sty s	t Br sty s			COOL	
SOIL CONDITION:	MOIST				S 32°03'30.3"	E 27°53'12.7"
		1				
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	10.00		·····
2	SE	3.0	15.0	11.00		
3	SW	3.0	15.0	9.00	10.60	199.8
4	NW	3.0	15.0	12.00	1	
5	NW	3.0	15.0	11.00	1	

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (\Overline{A}/m) CORROSIVENESS		
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR31			TEMPERATURE:		
DESCRIPTION:	lt Br sty s	t Br sty s			COLD	
SOIL CONDITION:	MOIST	· · · · · · · · · · · · · · · · · · ·			S 32°03'32.7"	E 27°53'21.5"
					- <u>111 - 111</u>	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	6.97		
2	SE	3.0	15.0	8.80		
3	SW	3.0	15.0	8.00	7.39	139.4
4	NW	3.0	15.0	6.20	· ·	
5	NW	3.0	15.0	7.00	1	

ADDITIONAL NOTES:

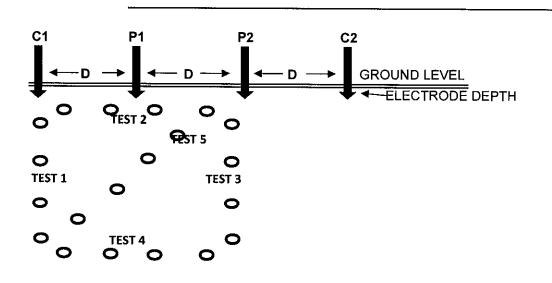
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			

ſ. Technical Signatory:

$\mathbf{\Lambda}$ ControLab South Africa (Pty) Ltd

CIVIL ENGINEERING MATERIALS AND GEOTECHNICAL LABORATORY

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-04-07
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR32			TEMPERATURE:			
DESCRIPTION:	lt Br sty s			WEATHER COND:	: COLD		
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	S 32°03'35.4"	E 27°53'31.0"	
					-		
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m	
1	NE	3.0	15.0	3.00			
2	SE	3.0	15.0	4.00			
3	SW	3.0	15.0	3.00	3.80	71.6	
4	NW	3.0	15.0	4.00			
5	NW	3.0	15.0	5.00	1		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m) CORROSIVENESS			
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
2007 a. 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 -	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-19
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

		Determination	of Soil Resistivity	
			2	

3.0

av. 3.0

4

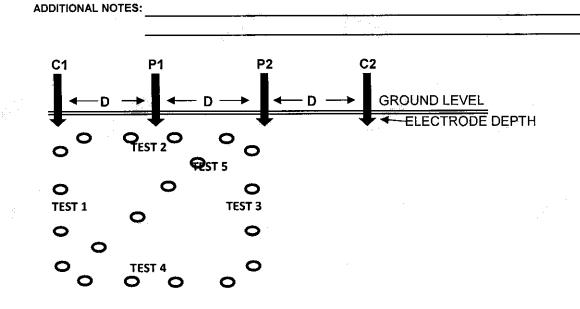
5

1.15

:0

NW

W


DESCRIPTION: It Br sty s + decDol WEATHER COND: COLD SOIL CONDITION: SLIGHTLY MOIST GPS CO-ORD: S32° 03' 44.2" E27° 53' 56.6" DISTANCE ELECTRODE RESISTANCE AVERAGE APPARENT SOIL						1	
SOIL CONDITION:SLIGHTLY MOISTGPS CO-ORD:S32° 03' 44.2"E27° 53' 56.6"TEST NO.:DISTANCE BETWEEN ELECTRODES (m)ELECTRODE DEPTH (cm)RESISTANCE READING (Ω)AVERAGE RESISTANCE READING (Ω)AVERAGE 	TEST POSITION	SR35			TEMPERATURE:		
TEST NO.:DISTANCE DIRECTION:DISTANCE BETWEEN ELECTRODES (m)ELECTRODE DEPTH (cm)RESISTANCE READING (Ω)AVERAGE RESISTANCE READING (Ω)APPARENT SOIL RESISTANCE RESISTIVITY (Ω/m1SW3.015.011.262SE3.015.010.92	DESCRIPTION:	lt Br sty s + dec	Dol	· · ·	WEATHER COND:	COLD	
TEST NO.:DIRECTION:BETWEEN BETWEEN ELECTRODES (m)ELECTRODE DEPTH (cm)RESISTANCE READING (Ω)RESISTANCE RESISTANCE READING (Ω)APPARENT SOIL RESISTANCE RESISTANCE READING (Ω)1SW3.015.011.262SE3.015.010.92	SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 03' 44.2"	E27° 53' 56.6"
TEST NO.:DIRECTION:BETWEEN BETWEEN ELECTRODES (m)ELECTRODE DEPTH (cm)RESISTANCE READING (Ω)RESISTANCE RESISTANCE READING (Ω)APPARENT SOIL RESISTANCE RESISTANCE READING (Ω)1SW3.015.011.262SE3.015.010.92							
2 SE 3.0 15.0 10.92	TEST NO.:		BETWEEN		5.5	RESISTANCE	APPARENT SOIL RESISTIVITY (Ω/m)
	1	SW ,	3.0	15.0	11.26		·
3 SW 3.0 15.0 11.44 11.25 212.0	2	SE	3.0	15.0	10.92		
	3	SW	3.0	15.0	11.44	11,25	212.0

15.0

15.0

11.50

11.12

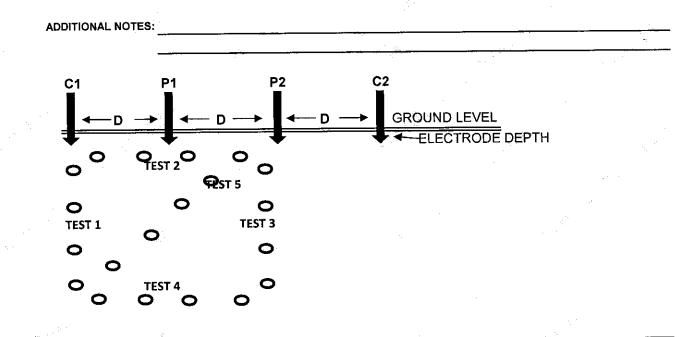
SOIL RESISTIVITY (Ω/m)	Y AND CORROSIVENESS: AS PER SANS 10199:2010 CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory

Ъ.;

J Atterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-19
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

				1	art 1	
TEST POSITION	SR36	SR36		TEMPERATURE:		
DESCRIPTION:	It Br sty s + dec	Dol		WEATHER COND:	COLD/WINDY	
SOIL CONDITION:	SLIGHTLY MOI		······································	GPS CO-ORD:	S32° 03' 47.2"	E27° 54' 05.4"
	1	a Tauli				
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1. 1	SW	3.0	15.0	9.32		
2	SE	3.0	15.0	8.90	8.57	
3	SW	3.0	15.0	8.50	8.57	161.5
4	NW	3.0	15.0	7.99		
5	W	3.0	15.0	8,13		

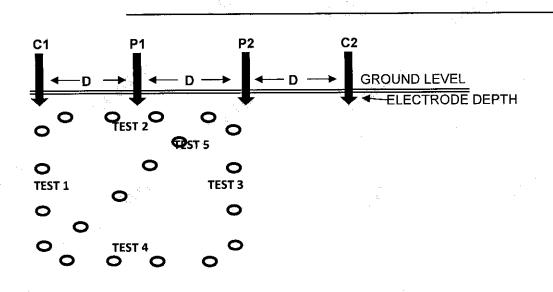
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			
> 1000	PROBABLY NOT CORROSIVE			

Technical Signatory

Atterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
- 19 ⁻¹⁰ -	PO Box 19553	Phase 5
· ·	TECOMA	DATE.: 2017-06-19
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

		N			·	
TEST POSITION	SR34			TEMPERATURE:		
DESCRIPTION:	lt Br sty s + decl	Dol	· · · ·	WEATHER COND:	COLD	
SOIL CONDITION:	DRY			GPS CO-ORD:	S32° 03' 41.0"	E27° 53' 47.6"
	<u></u>				<u> </u>	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SE	3.0	15.0			
2	SW	3.0	15.0		0.00	,
3	NE	3.0	15.0		0.00	0.0
4	NW	3.0	15.0			
5 🗇	SE	<u>6</u> 3.0	15.0	100]	

ADDITIONAL NOTES: (UTD) - PROBES UNABLE TO PENETRATE SURFACE

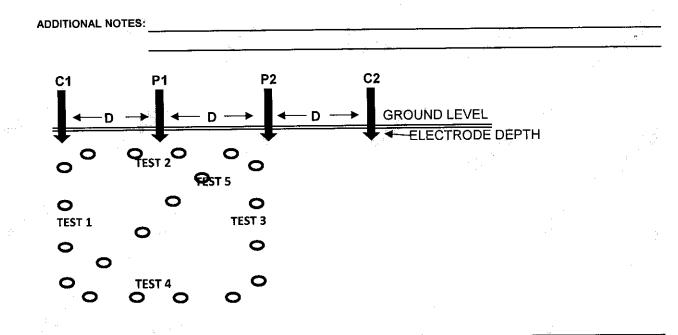
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory

260

Atterburv

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-20
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

	Dete	rmination of	of Soil	Resistivity	
25 V3n	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10.000		-

					1. ·	
TEST POSITION	SR37			TEMPERATURE:		
DESCRIPTION:	It Br dec Dol			WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOI	ST	······································	GPS CO-ORD:	S32° 03' 50.3"	E27° 54' 14.3"
0012 001121110	1					
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (ດ)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	8.25		
2	SE	3.0	15.0	6.79		
3.	SW	3.0	15.0	6.29	6.91	130.3
4	NW NW	3.0	15.0	6.89		
5	NE	3.0	15.0	6.35		. @

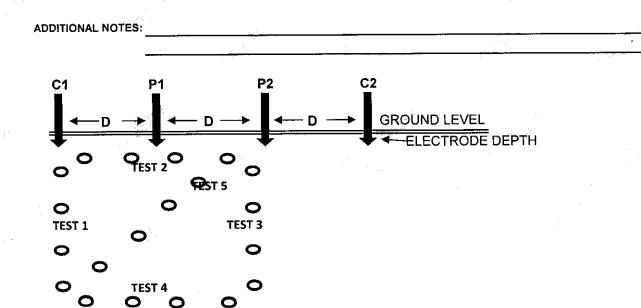
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			
> 1000				

Technical Signatory

JAtterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tei: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tei: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd
	PO Box 19553
	TECOMA
	5214
ATT :	Mr D Luhring

PROJECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-06-20 REF NO.: MT32019 INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

		- Att 30				
TEST POSITION	SR38		·	TEMPERATURE:		
DESCRIPTION:	It Br dec Dol	1.1. 		WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 03' 53.9"	E27° 54' 22.7"
			<u></u>			
TEST NO.:		DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE .	3.0	15.0	15.84		
2	SE	3.0	15.0	12.67	13 69	
3	ŚW	3.0	15.0	10.70	13.69	258.1
4	NW	3.0	15.0	15.74		
5 💮	NE	3.0	15.0	13.50		

SOIL RESISTIVITY (Ω/m)	TY AND CORROSIVENESS: AS PER SANS 10199:2010 CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE
<u> </u>	Technical Signatory:

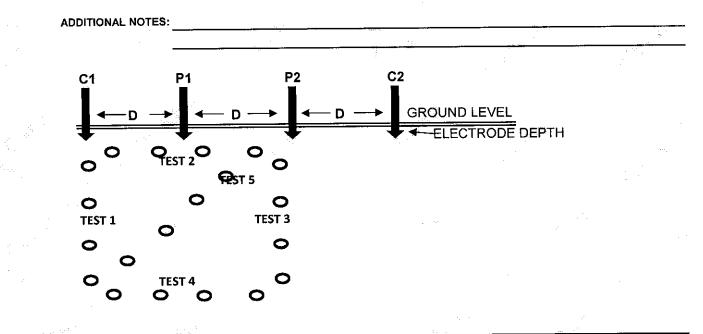
JAtterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
: •	TECOMA	DATE.: 2017-06-20
	5214	REF NO.: MT32019
ATT:	Mr D Luhring	INSTRUMENT S/N: DET4TC2


Determination of Soil Resistivity

TEST POSITION	SR39			TEMPERATURE:		
DESCRIPTION:	It Br dec Dol			WEATHER COND:	VERY COLD	
SOIL CONDITION:				GPS CO-ORD:	S32° 04' 00.6" E27° 54' 28.	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
<u> </u>	NE NE	3.0	15.0	13.37		
2	SE	3.0	15.0	15.17		
3	SW	3.0	15.0	13.12	14.32	269.9
4	NW	3.0	15.0	14.68		
5	NE	3.0	15.0	15.25		

24 G.6

Technical Signatory:

Atterbury

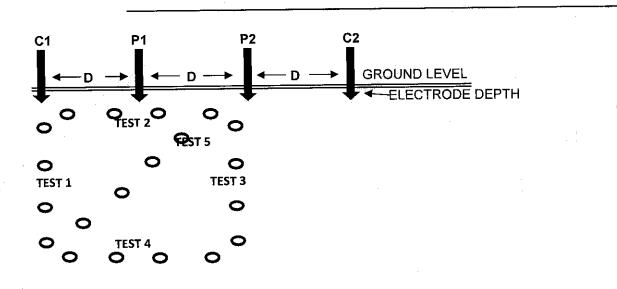
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PRO
5. 1911 - 1912 - 1913 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914	PO Box 19553	
	TECOMA	D
	5214	REF
ATT :	Mr D Luhring	INSTRUMEN


JECT: Ngqamakhwe RWSS: Phase 5 DATE.: 2017-06-20 F NO.: MT32019 T S/N: DET4TC2

ALES

Determination of Soil Resistivity

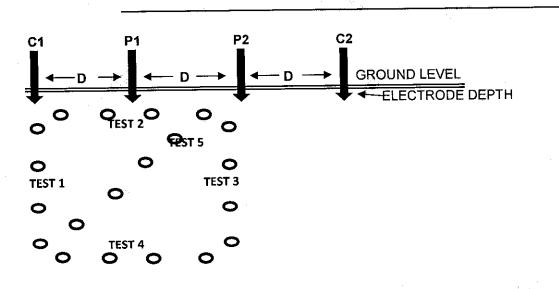
				N		
TEST POSITION	SR40	<u> </u>		TEMPERATURE:		
DESCRIPTION:	lt Br sty s			WEATHER COND:	VERY COLD	
SOIL CONDITION:			· · · · · · · · · · · · · · · · · · ·	GPS CO-ORD:	S32° 04' 07.0"	E27° 54' 33.9"
SOIL CONDITION.						
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SW	3.0	15.0	9.37		
2	NW	3.0	15.0	9.73	10.02	
3	NE	3.0	15.0	11.00	10.02	188.9
4	SE	3.0	15.0	12,00		
5 0	SW	് 3.0	15.0	8,00		

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd PO Box 19553	PROJECT: Ngqamakhwe RWSS: Phase 5
	TECOMA	DATE.: 2017-06-20
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

	58.3		محصاف مناحمته والع	of Call Decietivity
	See Sec.		termination	of Soil Resistivity
1. The second second second second second second second second second second second second second second second				41.150

9						
TEST POSITION	SR41			TEMPERATURE:		. <u></u>
DESCRIPTION:	It Br dec Dol			WEATHER COND:	VERY COLD	· · · · · ·
SOIL CONDITION:	SLIGHTLY MOIST		GPS CO-ORD:	S CO-ORD: S32° 04' 14.2" E27° 54		
0012 0012	1					
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE NE	3.0	15.0			
2	SE	3.0	15.0			
3	SW	3.0	15.0		0.00	0.0
4	NW	.3.0	15.0			
5	NE	3.0	15.0	She and a start		

ADDITIONAL NOTES: (UTD) - PROBES UNABLE TO PENETRATE SURFACE

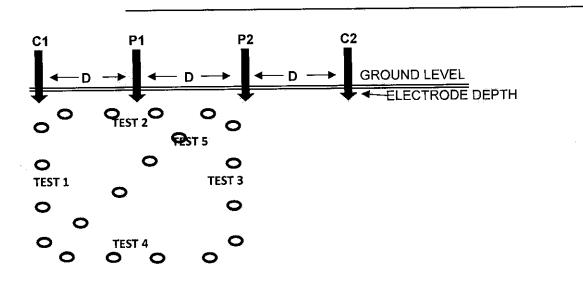
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory

÷ę.

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-20
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

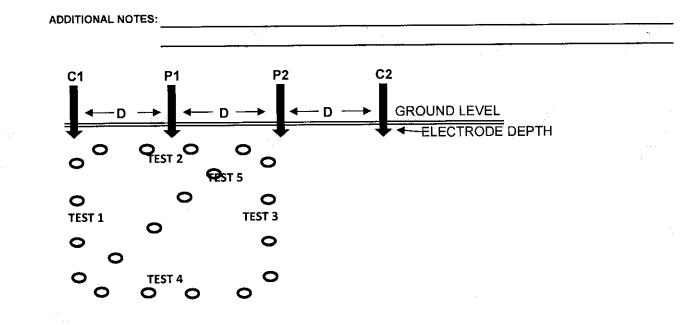
TEST POSITION	SR42			TEMPERATURE:		
DESCRIPTION:	It Y Br dec Dol			WEATHER COND:	COLD	
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 04' 20.7"	E27° 54' 45.9"
	1				· · · · · · · · · · · · · · · · · · ·	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	<u> </u>	11.25		
2	SE	3.0	15.0	10.36	- 11.12	·
3	SW	3.0	15.0	11.47	11.12	209.5
4	NW	3.0	15.0	10.17	3	
5 💮	SE	3.0	15.0	12,33		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	
> 1000	PROBABLY NOT CORROSIVE	

Technical Signatory

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
-	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-20
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determinati	on of Soil Resistivity

TEST POSITION	SR43		TEMPERATURE:			
DESCRIPTION:	It Y Br dec Dol			WEATHER COND:	COLD	
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 04' 27.0"	E27° 54' 51.3"
	<u> </u>			an an an an an an an an an an an an an a	·········	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE NE	3.0	15.0	0.73		
2	SE	3.0	15.0	0.55		
3	SW	3.0	15.0	0.65	0.68	12.9
4	NW	3.0	15.0	0.77		
5	NE	<u>ئ</u> 3.0	15.0	0.71]	

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

Technical Signatory:

Attérbui

ta Ed a la la

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

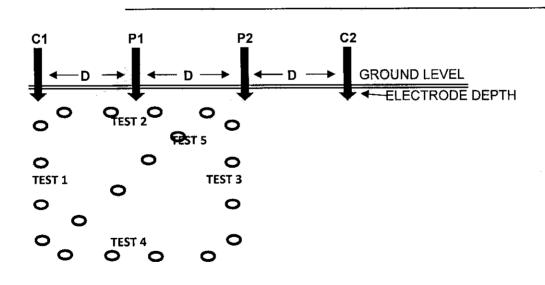
www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Mthatha, Queenstown, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd PO Box 19553
	TECOMA
	5214
ΔΤΤ·	Mr D Lubring

PROJECT: Nggamakhwe RWSS: Phase 5 DATE .: 2017-06-20 **REF NO.: MT32019 INSTRUMENT S/N: DET4TC2**

Sale Contract


Mr D Luhring AII:

Determination of Soil Resistivity

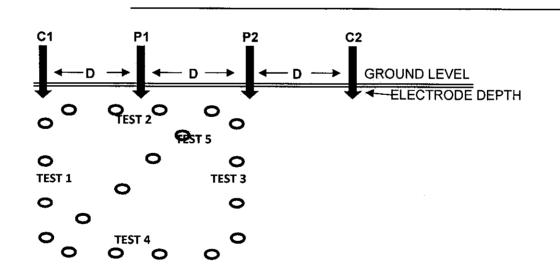
TEST POSITION	SR44			TEMPERATURE:		
DESCRIPTION:	lt Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	SLIGHTLY MOI	ST	·····	GPS CO-ORD:	S32° 04' 33.5"	E27° 54' 56.8"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	<u>,</u> 15.0	5.58	6.61	
2	SE	3.0	15.0	6.52		
3	ŚW	3.0	15.0	7.56	6.61	124.6
4	NW	3.0	15.0	6.76		
5	NE		15.0	6,62		

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-21
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR45			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	S32° 04' 39.9"	E27° 55' 02.7"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (0)	APPARENT SOIL RESISTIVITY (Ω/m
1 1 二 二	NĘ	3.0	15.0	4.77		
2	SE	3.0	15.0	6.49		
3	SW	3.0	15.0	5.38	5.33	100.4
4	NW	3.0	15.0	4.80		
5 🖉 🕅	NE	3.0	15.0	5.20]	

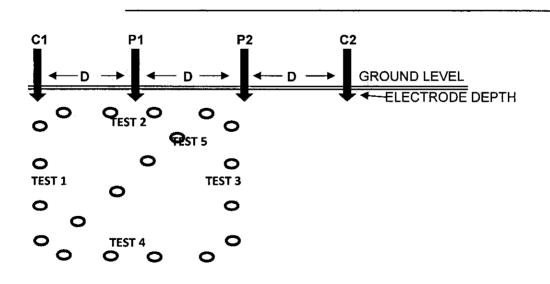
ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			

Technical Signatory

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-21
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soll Resistivity

TEST POSITION	SR46			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	S32° 04' 46.2"	E27° 55' 08.5"
			· · · · · · · · · · · · · · · · · · ·			
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NESS	3.0	15.0	1.00		
2	SE	3.0	15.0	1.01		
3	SW	3.0	15.0	1.03	1.00	18.9
4	NW	3.0	15.0	0.96		「「「「「「「」」
5 🗸 🕅	NE	3.0	15.0	1,01		

ADDITIONAL NOTES:

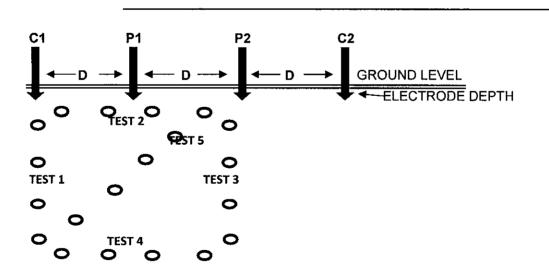
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)	Ì		
> 1000	PROBABLY NOT CORROSIVE /	7		
• · · · · · · · · · · · · · · · · · · ·		7		

Technical Signatory:_

JAtterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-21
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR47			TEMPERATURE:		
DESCRIPTION:	It Br dec Dol			WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	\$32° 04' 52.9"	E27° 55' 12.9"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE NE	3.0	15.0	12.04		
2	SE	3.0	15.0	10.00		
3	SW	3.0	15.0	9.00	10.27	193.6
4	NW	3.0	15.0	11.06		
5 🖉 💱	NE	3.0	15.0	9,26		

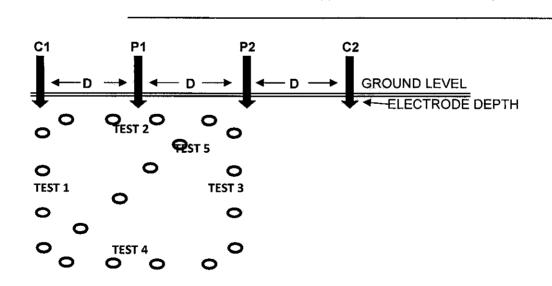
ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010					
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS				
0 - 10	VERY SEVERE				
10 - 100	MODERATE TO SEVERE				
100 - 1000	MILD (IF AERATED)				
> 1000	PROBABLY NOT CORROSIVE				

Technical Signatory:

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

ADDITIONAL NOTES:


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-21
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR48			TEMPERATURE:		
DESCRIPTION:	It Br dec Dol			WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	S32° 05' 00.5"	E27° 55' 16.4"
TEST NO.:		DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	
1	NE	3.0	15.0	2.09		
2	SÉ	3.0	15.0	1.88		
3	ŚW	3.0	15.0	1.77	1.84	34.6
4	NW	3.0	15.0	2.01		
5. , 🕅	NE	3.0	15.0	1,44		

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE /		

Technical Signatory:_

J Atterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-21
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR49			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	\$32° 05' 08.0"	E27° 55' 19.8"
						· · · · · · · · · · · · · · · · · · ·
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NĘ	3.0	15.0	0.79		
2	SE	3.0	15.0	0.79		
3	ŠW	3.0	15.0	0.68	0,73	_e 13.8
4	NW	3.0	15.0	0.61		
5 🛒	NE	3.0	15.0	0,78	1	

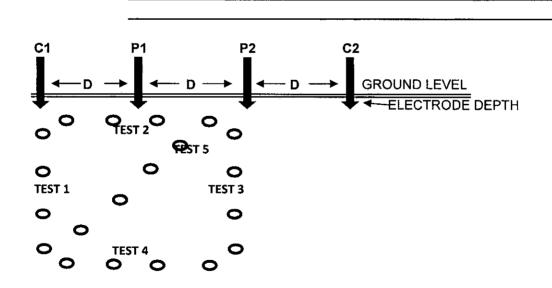
ADDITIONAL NOTES:

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE / / /		
> 1000	PROBABLY NOT CORROSIVE Technical Signatory:		

J Attel bury

ADDITIONAL NOTES:

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES


www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mithatha, Queenstown, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-21
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR50		TEMPERATURE:			
DESCRIPTION:	It Br sty s		WEATHER COND:	VERY COLD		
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	S32° 05' 15.4"	E27° 55' 23.2"
	1	·····	r		1	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	7.79		
2	SE	3.0	15.0	6.44		
3	SW	3.0	15.0	5.84 ,	6.71	126.4
4	NW	3.0	15.0	6.12		
5 y 🖓	NE	3.0	15.0	7,35	1	

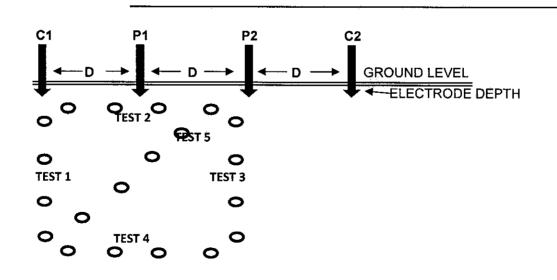
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			

Technical Signatory:

Atter

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-21
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR51	SR51				
DESCRIPTION:	P Ms		WEATHER COND:	VERY COLD		
SOIL CONDITION:	DRY		GPS CO-ORD: \$32° 05' 21.9" E27		E27° 55' 27.2"	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1 2 3 4 5	NE SE SW NW NE	3.0 3.0 3.0 3.0 3.0 3.0 3.0	15.0 15.0 15.0 15.0 15.0 15.0			

ADDITIONAL NOTES: (UTD) - PROBES UNABLE TO PENETRATE SURFACE

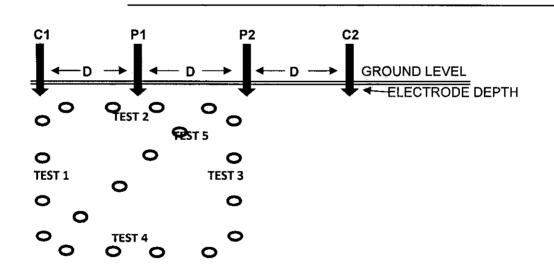
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

J Atterbury

.

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 21/06/2017
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR52			TEMPERATURE:		
DESCRIPTION:	It Br sty s			WEATHER COND:	COLD	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD: \$32° 05' 29.3" E27° 55'		
	·····					
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (0)	
1	NE	3.0	15.0	6.20		
2	SE	3.0	15.0	4.30		
3	SW	3.0	15.0	3.44	4.76	89.7
4	NW	3.0	15.0	4 10		
5 🖉	NE	3.0	15.0	5,76]	

ADDITIONAL NOTES:

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE / /

Technical Signatoty:

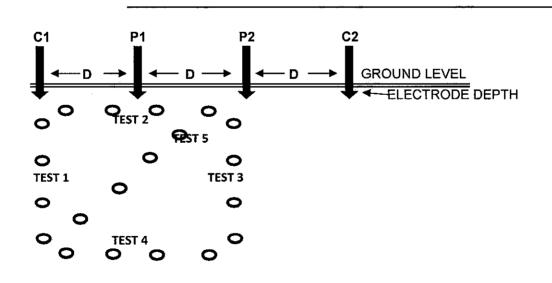
A Star

イAtterbury

.

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenslown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR53 It Br sty s ⊸			TEMPERATURE:		
DESCRIPTION:				WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	S32° 05' 36.9"	E27° 55' 35.2"
					-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	1.51		
2	SE	3.0	15.0	2.00		
3	SW	3.0	15.0	2.00	2.30	43.4
4	NW	3.0	15.0	3.00		
5 🖉 📎	NE	3.0	15.0	3,00]	

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE /			

Technical Signatory:

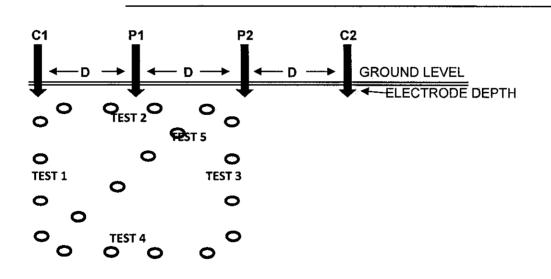
3.95

.

J Atterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR54 It Br sty s			TEMPERATURE:		
DESCRIPTION:				WEATHER COND:	VERY COLD	
SOIL CONDITION:	SLIGHTLY MOIST			GPS CO-ORD:	S32° 05' 36.1"	E27° 55' 44.3"
· · · · ·						
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	2.31		
2	SE	3.0	15.0	2.69		
3 3 1 3	SW	3.0	15.0	2.43	2.52	47.5
4	NW	3.0	15.0	2.65		
5 🖉	NE	3.0	15.0	2,51		

ADDITIONAL NOTES:

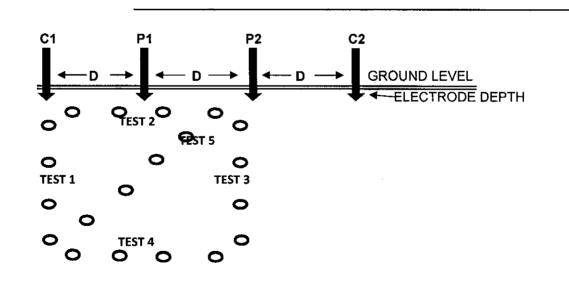
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			
	Technical Signatory:			

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2


Determination of Soil Resistivity

TEST POSITION	SR55		TEMPERATURE:			
DESCRIPTION:	It Br sty s		WEATHER COND:	VERY COLD/W	VINDY	
SOIL CONDITION:	SLIGHTLY MOIST		GPS CO-ORD:	S32° 05' 34.7"	E27° 55' 54.0"	
	.		,		• • •	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	3.73		
2	SE	3.0	15.0	3.90		
3	SW	3.0	15.0	3.65	3.83	72.1
4	NW	3.0	15.0	4.00	8	
5 📡 💖	NE	3.0	15.0	3,85		

.

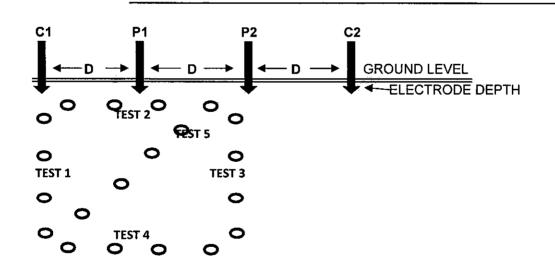
tterbury

ADDITIONAL NOTES:

VERY SEVERE
MODERATE TO SEVERE
MILD (IF AERATED)
PROBABLY NOT CORROSIVE /
•

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mihatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 22/06/2017
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR56		TEMPERATURE:			
DESCRIPTION:	DESCRIPTION: weath Ms		WEATHER COND:	VERY COLD/WINDY		
SOIL CONDITION:	SLIGHTLY MOIST		GPS CO-ORD:	S32° 05' 31.7"	E27° 56' 02.4"	
					- .	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0			
2	SE	3.0 🤘	15.0			
3	SW	3.0	15.0			i son Turin kase
4	NW	3.0	15.0			
5 🗸 🕅	NE	3.0	15.0			

ADDITIONAL NOTES: (UTD) - PROBES UNABLE TO PENETRATE THE SURFACE

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

echnical Signat tterbury

.

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR57		TEMPERATURE:			
DESCRIPTION:	It Br sty s		WEATHER COND:	VERY COLD/WINDY		
SOIL CONDITION:	SLIGHTLY MOIST		GPS CO-ORD:	S32° 05' 26.9"	E27° 56' 09.6"	
					-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SE	3.0	15.0	2.56		
2	SW	3.0	15.0	2.16		
3	NE NE	3.0	15.0	2.10	2.30	43.4
4	NW	3.0	15.0	1 90		
5 🔍 🖑	SE	3.0	15.0	2.78] ,	

ADDITIONAL NOTES:

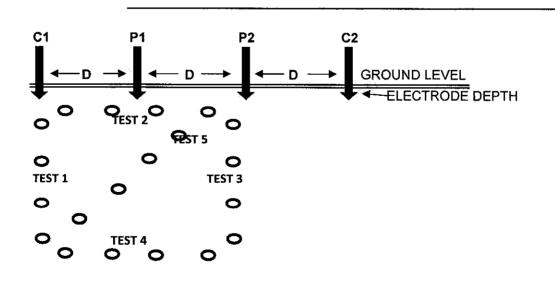
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000	PROBABLY NOT CORROSIVE	

Technical Signatory:_

ŀAtterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 22/06/2017
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR58		TEMPERATURE:			
DESCRIPTION:	ו: It Br sty s + Ms		WEATHER COND:	VERY COLD/W	VINDY	
SOIL CONDITION:	SLIGHTLY MOIST		GPS CO-ORD:	S32° 05' 22.3"	E27° 56' 17.7"	
	, 				-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SE	3.0	15.0	34.00		
2	SW	3.0	15.0 /	32.00		
3	NE	3.0	15.0	34.00,	32.20	607.0
4	NW	, 3.0	15.0	31.00		
5	SE	3.0	15.0	30.00		

ADDITIONAL NOTES:

SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		

Technical Signatory:_

↓ Atterbury

.

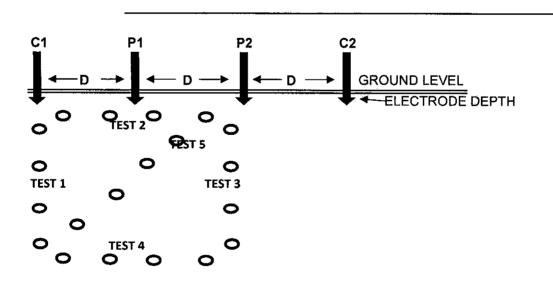
CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mithatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity


TEST POSITION	SR59	SR59				
DESCRIPTION:	lt Br sty s			WEATHER COND:	VERY COLD/M	/INDY
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 05' 22.0"	E27° 56' 27.0"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SE	3.0	15.0	9.00		
2	SW	3.0	15.0	7.00		
3	NE	3.0	15.0	9.00	8.00	150.8
4	NW	3.0	15.0	8.00		a de la companya de
5 🖉 🧐	SE	3.0	15.0	7,00	1	

S. Carl

.

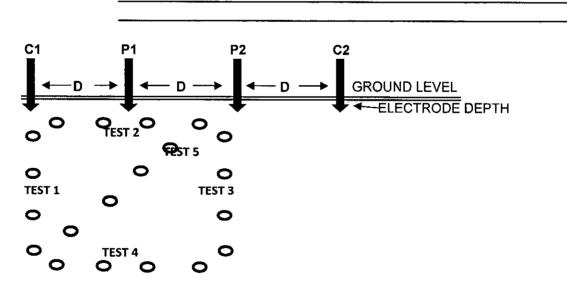
J Attenbury

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		
	Technical Signatory		

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR60	SR60				
DESCRIPTION:	lt Br sty s			WEATHER COND:	VERY COLD/W	VINDY
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 05' 21.9"	E27° 56' 36.9"
	·				· · · · · · · · · · · · · · · · · · ·	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SE	3.0	15,0	7.00		
2	SW	3.0	15.0	6.00		
3	ŃE	3.0	15.0	8.00	6.40	120.6
4	NW N	3.0	15.0	5.00		
5 🖉	SE	3.0	15.0	6,00	1	

ADDITIONAL NOTES:

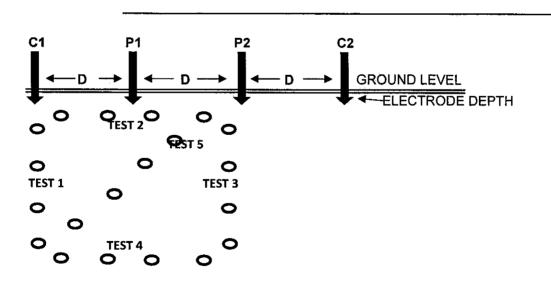
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory:

J∕Att∉rbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mithatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR61					
DESCRIPTION:	lt Br sty s				VERY COLD/WINDY	
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 05' 17.5"	E27° 56' 43.1"
					-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NĘ	3.0	15.0	3.05		
2	SE	3.0	15.0	3.00		
3	ŚW	3.0	15.0	3.20	3.02	56.9
4	NW	3.0	15.0	3 10		
5 🤇 🦓	NE	3.0	15.0	2,75	1	

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010					
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	CORROSIVENESS			
0 - 10	VERY SEVERE				
10 - 100	MODERATE TO SEVERE	· · · ·			
100 - 1000	MILD (IF AERATED)		-		
> 1000	PROBABLY NOT CORROSIVE	$\overline{7}$	\neg		

Technical Signatory:

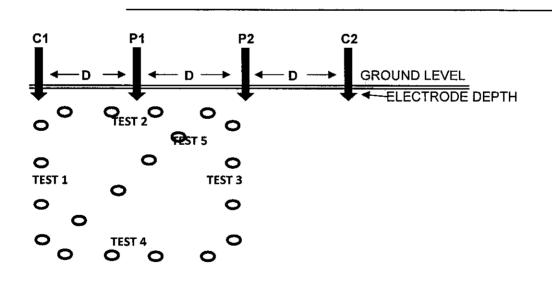
1. 10 1002

J Atter

.

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR62			TEMPERATURE:		
DESCRIPTION:	lt Br sty s	It Br sty s			VERY COLD/WINDY	
SOIL CONDITION:	SLIGHTLY MOI	SLIGHTLY MOIST			S32° 05' 10.7"	E27° 56' 47.8"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (D)	APPARENT SOIL RESISTIVITY (Ω/m)
1	NE	3.0	15.0	7.00		
2	SE	3.0	15.0	6.00		
- 3 4-3月復 	ŚW	3.0	15.0	9.00	6.80	128.2
4	NW	3.0	15.0	5.00		
5 📝 🕅	NE	3.0	15.0	7.00		

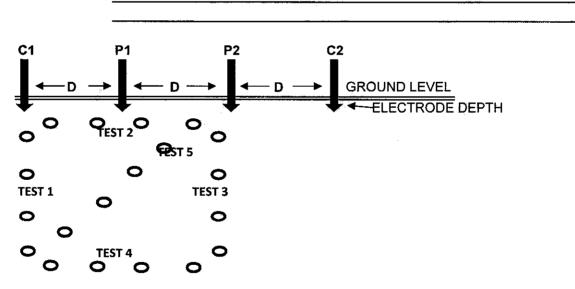
ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		
	///		

Technical Signatory:

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR63	SR63				
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY COLD/W	VINDY
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	\$32° 05' 03.6"	E27° 56' 52.4"
	·····			· · · · · · · ·	.	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	ÁPPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	10.00	11111111111111111111111111111111111111	
2	SE	3.0	15.0	11.00		
3	ŚW	3.0	15.0	10.00	10.80	203.6
4	NW	3.0	15.0	12.00		
5 💚	NE	3.0	15.0	11.00		

ADDITIONAL NOTES:

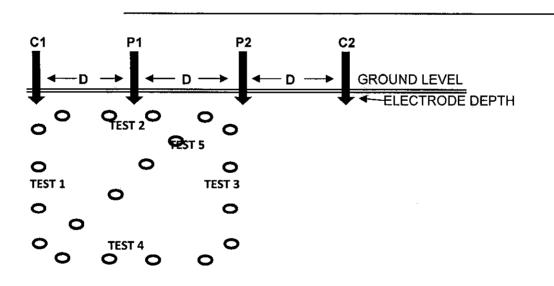
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			

Technical Signatory:

1363

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambla

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR64	SR64				
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY COLD/W	/INDY
SOIL CONDITION:	SLIGHTLY MOI	SLIGHTLY MOIST			S32° 04' 57.8"	E27° 56' 56.3"
		DISTANCE		;	AVERAGE	
TEST NO.:	DIRECTION:	BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	NE	3.0	15.0	9.00		
2	SE	3.0	15.0	9.00		
3	SW	3.0	15.0	7.00	8.40	158.3
4	NW	3.0	15.0	8.00		「「「離野」
5	NE	3.0	15.0	9,00	1	

ADDITIONAL NOTES:

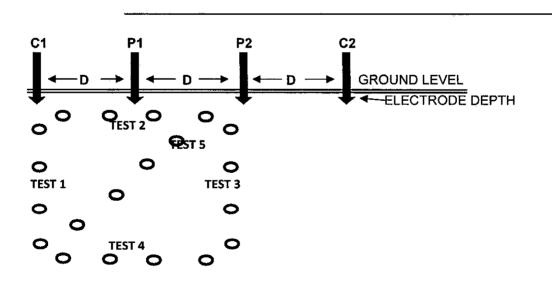
RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010				
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS			
0 - 10	VERY SEVERE			
10 - 100	MODERATE TO SEVERE			
100 - 1000	MILD (IF AERATED)			
> 1000	PROBABLY NOT CORROSIVE			

Technical Signatory:

J Atterbury

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR65	SR65				
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY COLD/M	/INDY
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	S32° 05' 37.2"	E27° 56' 03.4"
		· · · · · · · · · · · · · · · · · · ·			-	
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SW	3.0	15.0	5.76		
2	NW	3.0	15.0	4.00		
3 - 14	NE	3.0	. 15.0	3.65	4.63	87.3
4	SE	3.0	15.0	5.00		
5	SW	3.0	15.0	4,75		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE /	\neg	
		7.	

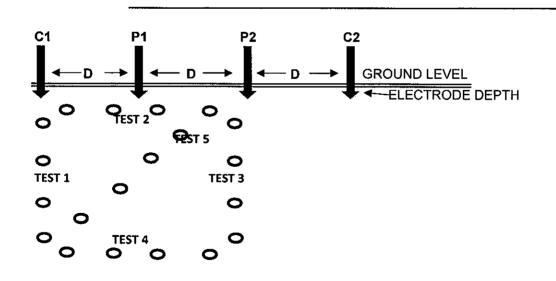
Technical Signatory:

J Attent

.

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR66	SR66				
DESCRIPTION:	It Br sty s			WEATHER COND:	VERY COLD/WINDY	
SOIL CONDITION:	SLIGHTLY MOI	ST		GPS CO-ORD:	\$32° 05' 44.8"	E27° 56' 03.6"
	-		-			
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m
1	SW	3.0	15.0	2.79		
2	NW	3.0	15.0	3.10		
3	NE	3.0	15.0	2.98	2.87	54.1
4	SE	3.0	15.0	2.00		
5	SW	3.0	15.0	3,47	1	1. C

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010			
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS		
0 - 10	VERY SEVERE		
10 - 100	MODERATE TO SEVERE		
100 - 1000	MILD (IF AERATED)		
> 1000	PROBABLY NOT CORROSIVE		
· · · · · · · · · · · · · · · · · · ·			

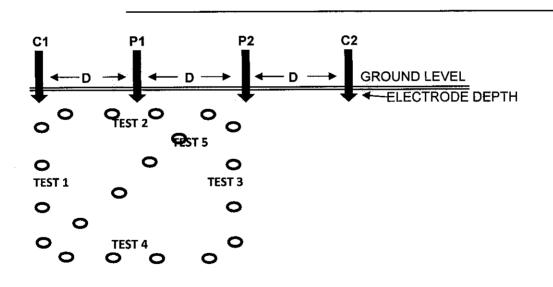
Technical Signatory

Atterbury

-

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za


HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR67			TEMPERATURE:		
DESCRIPTION: It Br sty s				WEATHER COND:	VERY COLD/WINDY	
SOIL CONDITION:				GPS CO-ORD:	S32° 05' 52.7"	E27° 56' 03.8"
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (0)	APPARENT SOIL RESISTIVITY (Ω/m
1	SW NW	3.0 3.0	15.0 15.0	4.26 3.78		
3	NE	3.0 3.0	15.0 15.0	3.95 4.00	3.85	72.6
4 5	SE SW	3.0	15.0	3,26		

ADDITIONAL NOTES:

RELATIONSHIP BETWEEN SOIL RESISTIVITY AND CORROSIVENESS: AS PER SANS 10199:2010		
SOIL RESISTIVITY (Ω/m)	CORROSIVENESS	
0 - 10	VERY SEVERE	
10 - 100	MODERATE TO SEVERE	
100 - 1000	MILD (IF AERATED)	
> 1000		

Technical Signatory

J Attexbury

٠

CIVIL ENGINEERING MATERIAL AND GEOTECHNICAL LABORATORY, GEOTECHNICAL AND ENVIRONMENTAL SERVICES

www.controlab.co.za

HEAD OFFICE: 1 Alfred Road, Vincent 5247, Tel: 043 726 7859, Fax: 043 726 7426 CENTRAL LABORATORY : 10 St Pauls Road, East London, 5201, Tel: 043 722 5420 / 722 8565, Fax: 043 743 9942, P O Box 346, East London, 5200 OTHER BRANCH OFFICES: Cape Town, Kokstad, Johannesburg, Mthatha, Queenstown, Lusaka - Zambia

CLIENT:	Aurecon SA (Pty) Ltd	PROJECT: Ngqamakhwe RWSS:
	PO Box 19553	Phase 5
	TECOMA	DATE.: 2017-06-22
	5214	REF NO.: MT32019
ATT :	Mr D Luhring	INSTRUMENT S/N: DET4TC2

Determination of Soil Resistivity

TEST POSITION	SR68			TEMPERATURE:		
DESCRIPTION:	It Br sty s		WEATHER COND:	VERY COLD/M	/INDY	
SOIL CONDITION:			GPS CO-ORD:	S32° 05' 32.2"	E27° 56' 12.9"	
	••••••					
TEST NO.:	DIRECTION:	DISTANCE BETWEEN ELECTRODES (m)	ELECTRODE DEPTH (cm)	RESISTANCE READING (Ω)	AVERAGE RESISTANCE READING (Ω)	APPARENT SOIL RESISTIVITY (Ω/m)
1	SW	3.0	15.0	5.00		
2	NW	3.0	15.0	3.62		
3	NE	3.0_	15.0	3.82	4.11	77.4
4	SE	3.0	15.0	5.00		
5 🗸 🕅	SW	3.0	15.0	3,10]	

RESISTIVITY (Ω/m)	CORROSIVENESS
0 - 10	VERY SEVERE
10 - 100	MODERATE TO SEVERE
100 - 1000	MILD (IF AERATED)
> 1000	PROBABLY NOT CORROSIVE

Technical Signatory:

-J Atterbury

PART C4.2: HERITAGE INVESTIGATION REPORT

Phase 1 Archaeological & Cultural Heritage Impact Assessment -

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape

- 23 May 2017 -

Report to:

Sello Mokhanya (Eastern Cape Provincial Heritage Resources Agency – EC PHRA, APM Unit) E-mail: smokhanya@ecphra.org.za; Tel: 043 745 0888; Postal Address: N/A

Brendon Steytler (Indwe Environmental Consulting) E-mail: brendon@indwecon.co.za; Tel: 043 721 2344; Postal Address: P.O. Box 19829, Tecoma, East London, 5214

Prepared by:

Karen van Ryneveld (ArchaeoMaps)

E-mail: karen@archaeomaps.co.za; Tel: 084 871 1064; Postal Address: Postnet Suite 239, Private Bag X3, Beacon Bay, 5205

Specialist Declaration of Interest

I, Karen van Ryneveld (Company – ArchaeoMaps; Qualification – MSc Archaeology), declare that:

- o I am suitably qualified and accredited to act as independent specialist in this application;
- I do not have any financial or personal interest in the application, its' proponent or subsidiaries, aside from fair remuneration for specialist services rendered; and
- That work conducted have been done in an objective manner and that any circumstances that may have compromised objectivity have been reported on transparently.

Klynoulde.

Signature -

- 23 May 2017 -

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

ArchaeoMaps

Phase 1 Archaeological & Cultural Heritage Impact Assessment -

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape

Executive Summary

Project Description -

Indwe Environmental have been appointed as independent Environmental Assessment Practitioner (EAP) by the project proponent to apply for Environmental Authorization (EA), including a Basic Assessment Report (BAR) and Environmental Management Plan (EMPr) to the Eastern Cape Department of Economic Development, Environmental Affairs and Tourism (DEDEAT) for the proposed Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Eastern Cape. The proposed development is situated at general development co-ordinate S32°02′43.7″; E27°51′04.3 (Nxaybisa Village) and comprises an approximate 20km water pipeline development.

The Phase 1 Archaeological & Cultural Heritage Impact Assessment -

Project Name & Locality: Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape [1:50,000 Map Ref – 3227BB].

Summary of Findings:

Seventeen (17) newly identified and one (1) known heritage site, totalling eighteen (18) heritage sites are situated within the approximate 50-100m survey corridor of the proposed *Ngqamakwe Phase* 5 *Water Supply Project*. Identified heritage sites comprise primarily Later Iron Age (LIA) grave and informal cemetery sites. Realignment of the line route is not recommended; realignment may well simply result in a new set of heritage sites to me managed during development in the heritage rich area. Recommended temporary conservation measures are based on temporary fencing and signage during the construction phase. All temporary conservation measures should be removed upon completion of construction. Development in the vicinity of unfenced, informal graves or cemeteries should not encroach within 10m from the burial places.

- > The proposed development poses no 'fatal flaws' with reference to archaeological and cultural heritage resources.
- > The development will have a limited negative visual and cumulative impact on the cultural landscape during the construction phase and no negative visual and cumulative impact during the operational phase.
- It is recommended that a heritage specialist / ECO report on heritage compliance to the EC PHRA during the construction phase of the development.
- [In the event of any incidental archaeological and cultural heritage resources, as defined and protected by the NHRA 1999, being identified during the course of development the process described in 'Appendix B: Heritage Protocol for Incidental Finds during the Construction Phase' should be followed.]

Heritage Compliance Summary – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape					
Map Code	Site	Co-ordinates	Recommendations		
Ngqamakwe Phase 5 Water Supply Project					
Site NGQ27	Later Iron Age – Grave	S32°02'38.7"; E27°50'09.3"	Temporary heritage conservation fencing and signage		
Site NGQ28	Later Iron Age – Livestock enclosure	S32°02'53.3"; E27°50'34.6"	Temporary heritage conservation fencing and signage		
Site NGQ29	Later Iron Age – Cemetery	S32°02'47.8"; E27°50'41.6"	Temporary heritage conservation fencing and signage		
Site NGQ30	Later Iron Age – Grave	\$32°02'45.7"; E27°50'57.5"	Temporary heritage conservation fencing and signage		
Site NGQ31	Later Iron Age – Grave	\$32°02'46.8"; E27°51'07.6"	Temporary heritage signage		
Site NGQ32	Later Iron Age – Cemetery	S32°O2'51.9"; E27°51'12.2"	Temporary heritage conservation fencing and signage		
Site NGQ33	Later Iron Age – Graves	\$32°02'56.3"; E27°51'18.4"	Temporary heritage conservation fencing and signage		
Site NGQ34	Later Iron Age – Homestead remains	S32°02'54.0"; E27°51'18.7"	Temporary heritage signage		
Site NGQ35	Later Iron Age – Grave	\$32°03'02.1"; E27°51'19.2"	Temporary heritage signage		
Site NGQ36	Later Iron Age – Graves	S32°02'40.8"; E27°50'44.2"	Temporary heritage conservation fencing and signage		
Site NGQ37	Colonial Period – Residence	\$32°02'38.5"; E27°50'52.8"	Temporary heritage conservation fencing and signage		
Site NGQ38	Later Iron Age – Cemetery	S32°02'41.2"; E27°51'29.8"	Temporary heritage signage		
Site NGQ39	Later Iron Age – Cemetery	S32°02'40.2"; E27°51'30.3"	Temporary heritage conservation fencing and signage		
Site NGQ40	Later Iron Age – Homestead remains	S32°02'42.1"; E27°51'33.0"	Temporary heritage signage		
Site NGQ41	Later Iron Age – Homestead remains	S32°03'42.7"; E27°53'58.2"	Temporary heritage signage		
Site NGQ42	Later Iron Age – Grave	\$32°03'55.4"; E27°54'26.2"	Temporary heritage signage		
Site NGQ43	Later Iron Age – Grave	\$32°03'55.4"; E27°54'26.8"	Temporary heritage signage		
Site NGQ04	Later Iron Age – Grave	S32°04'01.1"; E27°54'26.3"	Temporary heritage conservation fencing and signage		

Recommendations –

With reference to archaeological and cultural heritage compliance, as per the requirements of the NHRA 1999, it is recommended that the proposed *Ngqamakwe Phase 5 Water Supply Project*, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape, proceed as applied for, provided the developer comply with the above listed heritage recommendations.

The EC PHRA-APM Unit HIA Comment will state legal requirements for development to proceed, or reasons why, from a heritage perspective, development may not be further considered.

Phase 1 Archaeological & Cultural Heritage Impact Assessment –

Nggamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

CONTENTS

	ption & Terms of Reference	
2 – The Phase 1 A	rchaeological & Cultural Heritage Impact Assessment	4
2.1.1)	Archaeological & Cultural Heritage Legislative Compliance	4
2.1.2)	Methodology & Gap Analysis	4
2.1 – Pre-feasik	pility Assessment	6
2.2.1)	Pre-feasibility Summary	
2.2.2)	The SAHRA 2009 MPD & SAHRIS	
2.2.3)	SAHRA Provincial Heritage Site Database – Eastern Cape	
2.2.4)	General Discussion	
2.2 – Field Ass	essment	9
2.2.1)	Introduction	9
2.2.2)	Site Descriptions	
2.2.2.1)	Site NGQ27: Later Iron Age - Grave (S32°02'38.7"; E27°50'09.3")	
2.2.2.2)	Site NGQ28: Later Iron Age – Livestock Enclosure (S32°02'53.3"; E27°50'34.6")	
2.2.2.3)	Site NGQ29: Later Iron Age - Cemetery (S32°02'47.8"; E27°50'41.6")	
2.2.2.4)	Site NGQ30: Later Iron Age - Grave (S32°02'45.7"; E27°50'57.5")	
2.2.2.5)	Site NGQ31: Later Iron Age - Grave (S32°02'46.8"; E27°51'07.6")	
2.2.2.6)	Site NGQ32: Later Iron Age - Cemetery (S32°02'51.9"; E27°51'12.2")	
2.2.2.7)	Site NGQ33: Later Iron Age - Graves (S32°02'56.3"; E27°51'18.4")	
2.2.2.8)	Site NGQ34: Later Iron Age – Homestead (S32°02'54.0"; E27°51'18.7")	
2.2.2.9)	Site NGQ35: Later Iron Age - Grave (S32°03′02.1″; E27°51′19.2″)	
2.2.2.10)	Site NGQ36: Later Iron Age - Graves (S32°02'40.8"; E27°50'44.2")	
2.2.2.11)	Site NGQ37: Colonial Period – Residence (S32°02'38.5"; E27°50'52.8")	
2.2.2.12)	Site NGQ38: Later Iron Age - Cemetery (S32°02'41.2"; E27°51'29.8")	
2.2.2.13)	Site NGQ39: Later Iron Age - Cemetery (S32°02'40.2"; E27°51'30.3")	
2.2.2.14)	Site NGQ40: Later Iron Age – Homestead (S32°02'42.1"; E27°51'33.0")	
2.2.2.15)	Site NGQ41: Later Iron Age – Homestead (S32°03'42.7"; E27°53'58.2")	
2.2.2.16)	5	
2.2.2.17)	Site NGQ43: Later Iron Age - Grave (S32°03'55.4"; E27°54'26.8")	
2.2.2.18)	5	
	al Impact Assessment Rating	
	itions	
,	Abbreviations	
6 – References		29

Appendix A:

Schematic Outline of the Pre-colonial and Colonial Periods in South Arica

Appendix B:

Heritage Protocol for Incidental Finds during the Construction Phase

Appendix C:

Resumé: Karen van Ryneveld

List of Maps

List of Plates

Plate 1: Site NGQ27	
Plate 2: Site NGQ28	
Plate 3: Site NGO29 [1]	
Plate 4: Site NGQ29 [2]	
Plate 5: NGQ29 [3]	
Plate 6: Site NGQ30	19
Plate 7: Site NGQ31	19
Plate 8: Site NGQ32 [1]	19
Plate 9: Site NGO32 [2]	20
Plate 10: Site NGQ32 [3]	20
Plate 11: Site NGQ33	20
Plate 12: Site NGQ34	20
Plate 13: Site NGQ35	21
Plate 14: Site NGQ36	21
Plate 15: Site NGQ37	
Plate 16: Typical monolithic farm, or farm camp fence post markers, associated with Site NGQ37	21
Plate 17: Site NGQ38	
Plate 18: Site NGQ39	
Plate 19: Site NGQ40 [1]	
Plate 20: Site NGQ40 [2]	
Plate 21: Site NGQ41	23
Plate 22: Site NGQ42	23
Plate 23: Site NGQ43	
Plate 24: Site NGQ4 (Anderson 2009)	

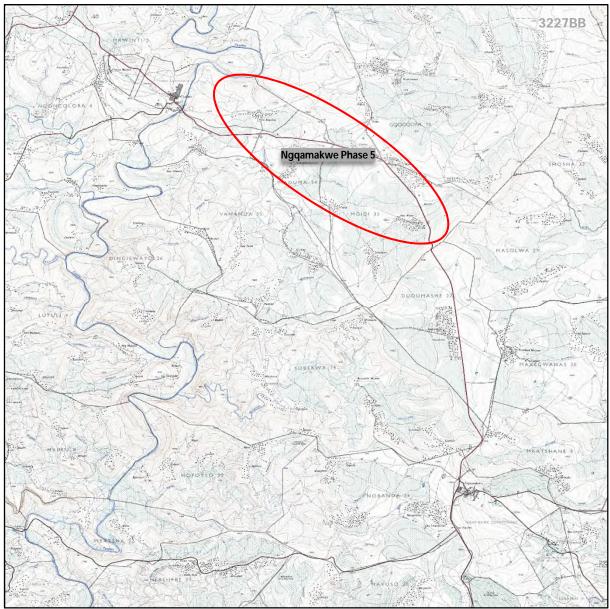
List of Tables

Table 1: Extract from the NHRA 1999, Section 38
Table 2: SAHRA archaeological and cultural heritage site significance assessment ratings and associated mitigation recommendations5
Table 3: Archaeological and basic cultural heritage probability assessment
Table 4: Environmental Impact Assessment Rating
Table 5: Heritage compliance summary

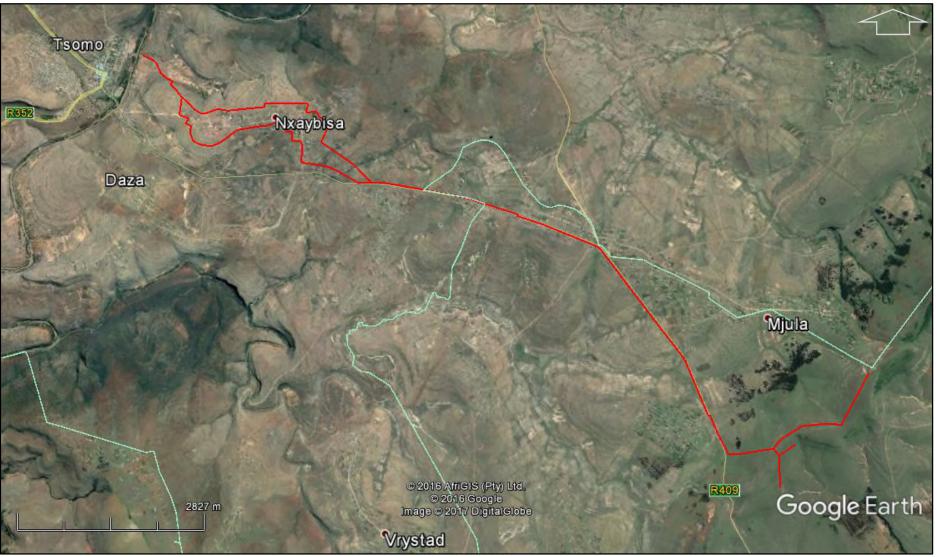
Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

1 - Project Description & Terms of Reference

Indwe Environmental have been appointed as independent Environmental Assessment Practitioner (EAP) by the project proponent to apply for Environmental Authorization (EA), including a Basic Assessment Report (BAR) and Environmental Management Plan (EMPr) to the Eastern Cape Department of Economic Development, Environmental Affairs and Tourism (DEDEAT) for the proposed Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Eastern Cape. The proposed development is situated at general development co-ordinate S32°02′43.7″; E27°51′04.3 (Nxaybisa Village) and comprises an approximate 20km water pipeline development.


ArchaeoMaps have been appointed by Indwe Environmental to compile the Phase 1 Archaeological & Cultural Heritage Impact Assessment (AIA) for the development, as specialist component to the application's Heritage Impact Assessment (HIA), and with findings and recommendations thereof to be included in the BAR and EMPr. Terms of Reference (ToR) for the Phase 1 AIA are summarized as:

- Describe the existing area to be directly affected by the proposal in terms of its archaeological and cultural heritage characteristics as formally protected by the National Heritage Resources Act, No 25 of 1999 (NHRA 1999) and the general sensitivity of these components to change;
- Describe the likely scope, scale and significance of impacts (positive and negative) on the archaeological and cultural heritage resources of the area associated with the 1) construction and 2) operation or use phases of the proposal;
- Make recommendations on the scope of any mitigation measures that may be applied during the 1) construction and 2) operation or use phases to reduce / avoid the significance of identified related impacts. Mitigation measures could be design recommendations as well as operational controls, monitoring programmes, Phase 2 mitigation, management procedures and the like;
- o Broadly describe the implication of a 'No-Go' option;
- Broadly comment on the cumulative impact (positive or negative) on archaeological or cultural heritage resources associated with the 1) construction and 2) operation or use phases of the proposal; and
- Confirm if there are any outright 'fatal flaws' to the proposal at its current location from an archaeological and cultural heritage perspective.


Map 1: General locality of the Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities (Base Map – MapStudio, 2008)

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Nggamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

Map 2: Locality of the Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape [1: 50,000 Map Ref – 3227BB]

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

Map 3: The Ngqamakwe Phase 5 Water Supply Project (red line), near Tsomo, Chris Hani and Amahole District Municipalities, Eastern Cape

2.1.1) Archaeological & Cultural Heritage Legislative Compliance

The Phase 1 Archaeological & Cultural Heritage Impact Assessment (AIA) for the Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape, was requested to meet the Eastern Cape Provincial Heritage Resources Authority's (EC PHRA) requirements with reference to archaeological and basic cultural heritage resources in terms of the National Heritage Resources Act, No 25 of 1999 (NHRA 1999), with specific reference to Section 38(1)(a). This report is submitted in (partial) fulfilment of the NHRA 1999, Section 38(3) requirements, for purposes of a NHRA 1999, Section 38(4) / Section 38(8) Heritage Impact Assessment (HIA) Comment by the EC PHRA.

NHRA 1999	, Section 38
1) Subject t	o the provisions of subsections 7), 8) and 9), any person who intends to undertake a development categorized as –
a)	The construction of a road, wall, powerline, pipeline, canal or other similar form of linear development or barrier exceeding 300m in length;
b)	The construction of a bridge or similar structure exceeding 50m in length;
c)	Any development or other activity which will change the character of a site –
	i. Exceeding 5,000m ² in extent; or
	ii. Involving three or more existing erven or subdivisions thereof; or
	Involving three or more erven or subdivisions thereof which have been consolidated within the past five years; or
	 The costs which will exceed a sum set in terms of regulations by SAHRA or a provincial heritage resources authority;
d)	The rezoning of a site exceeding 10,000m ² in extent;
e)	Any other category of development provided for in regulations by SAHRA or a provincial heritage resources authority,
	ist at the very earliest stages of initiating such a development, notify the responsible heritage resources authority d furnish it with details regarding the location, nature and extent of the proposed development.

Table 1: Extract from the NHRA 1999, Section 38

The Phase 1 AIA aimed to locate, identify and assess the significance of archaeological and cultural heritage resources, inclusive of archaeological deposits / sites (Stone Age, Iron Age and Colonial Period), rock art and shipwreck sites, built structures older than 60 years, sites of military history older than 75 years, certain categories of burial grounds and graves, graves of victims of conflict, basic living heritage and cultural landscapes and viewscapes as defined and protected by the NHRA 1999, Section 2, that may be affected by the development.

This report comprises a Phase 1 AIA, including a basic pre-feasibility study and field assessment only. The report was prepared in accordance with the 'Minimum Standards' specifications for Phase 1 AIA reports, as stipulated by SAHRA (2007).

Additional relevant legislation pertaining to the Phase 1 AIA is listed as:

o National Environmental Management Act, No 107 of 1998 (NEMA 1998) and associated Regulations (2014).

2.1.2) Methodology & Gap Analysis

The Phase 1 AIA includes a basic pre-feasibility study and field assessment:

 The pre-feasibility assessment is based on the Appendix A schematic outline of South Africa's Pre-colonial and Colonial past, associated with introductory archaeological as well as general and scientific literature available and relevant to the study site. Databases consulted include the SAHRA 2009 Mapping Project Database (MPD), the South African Heritage Resources Information System (SAHRIS) and SAHRA database(s) on declared Provincial Heritage Sites (PHS) pertaining to the study site. The study excludes consultation of museum and university databases.

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

The field assessment was done over a 1 day period (2017-05-17) with fieldwork conducted by the author. The assessment was done by vehicle and foot and limited to a Phase 1 surface survey. GPS co-ordinates were taken with Garmin Montana 650 (Datum: WGS84) Photographic documentation was done with a Canon EOS 1300D camera. A combination of Garmap (Base Camp) and Google Earth software was used in the display of spatial information.

The Phase 1 AIA was done according to the system and 'Minimum Standards' prescribed for the 3-tiered Phase 1-3 Heritage Impact Assessment (HIA) process (SAHRA 2007):

- Phase 1 HIA A Phase 1 HIA is compulsory for development types as stipulated in the NHRA 1999, Section 38(1) and Section 38(8), including any other development type or study site as required by the South African Heritage Resources Agency (SAHRA) or relevant Provincial Heritage Resources Authority (PHRA). A Phase 1 HIA comprises at minimum of an archaeological (AIA) and palaeontological (PIA) study, but aims to address all heritage types protected by the NHRA 1999 and to alert developers to additional heritage specialist study requirements, if and where relevant to a development. Phase 1 HIA studies focusses on pre-feasibility and desktop studies, routinely coined with field assessments in order to locate, describe and assign heritage site significance ratings to identified resources that may be impacted by development. The aim of a Phase 1 AIA is to make site specific and general development recommendations regarding identified heritage resources for development planning and implementation purposes and may include recommendations for conservation, heritage site declaration, monitoring, Phase 2 mitigation (excavation), or destruction.
- Phase 2 HIA Phase 2 HIAs are as a norm required where heritage resources of such significance have been identified during the Phase 1 HIA that mitigation (excavation) thereof is necessary for development purposes. Aside from large scale Phase 2 mitigation (routinely to precede development impact), lower keyed Phase 2 requirements may well include sampling, testing and monitoring during the construction or implementation phase of a development. Phase 2 HIA work is as a norm done under a compulsory heritage permit.
- Phase 3 HIA As an extension to Phase 2 HIA work or cases where recommendations for heritage declaration formed part of a development's heritage compliance requirements, heritage resources of such scientific or heritage tourism significance, that their long-term conservation and continued research would be necessary within a development framework is proposed as a Phase 3 HIA.

Archaeological and cultural heritage site significance assessment and associated mitigation recommendations are done according to the combined NHRA 1999, Section 7(1) and SAHRA (2007) system.

SAHRA Archaeological & Cultural Heritage Site Significance System					
Site Significance	Field Rating	Grade	Recommended Mitigation		
High Significance	National Significance	Grade I	Heritage site conservation / Heritage site development		
High Significance	Provincial Significance	Grade II	Heritage site conservation / Heritage site development		
High Significance	Local Significance	Grade III-A	Heritage site conservation or extensive mitigation prior to development / destruction		
High Significance	Local Significance	Grade III-B	Heritage site conservation or extensive mitigation prior to development / destruction		
High / Medium Significance	Generally Protected A	Grade IV-A	Heritage site conservation or mitigation prior to development / destruction		
Medium Significance	Generally Protected B	Grade IV-B	Heritage site conservation or mitigation / test excavation / systematic sampling / monitoring prior to or during development / destruction		
Low Significance	Generally Protected C	Grade IV-C	On-site sampling, monitoring or no heritage mitigation required prior to or during development / destruction		

Table 2: SAHRA archaeological and cultural heritage site significance assessment ratings and associated mitigation recommendations

Phase 1 Archaeological & Cultural Heritage Impact Assessment –

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

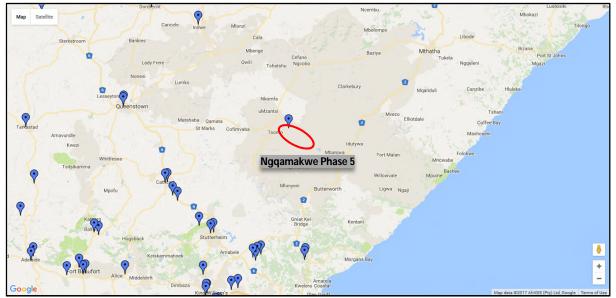
2.2.1) Pre-feasibility Summary

Based on the Appendix A schematic outline of the Pre-colonial and Colonial Periods in South Africa and background literature and database information, the probability of archaeological and cultural heritage resources situated on, or in proximity to the Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape, can briefly be described as:

Archaeological and Basic Cultural Heritage Probability Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape						
Primary Type / Period	Sub-period	Sub-period type site	Probability			
EARLY HOMININ / HOMINID	-	-	None			
	Graves / human remains: High scientific significance					
STONE AGE	Earlier Stone Age (ESA)		Low			
	Middle Stone Age (MSA)		Low			
	Later Stone Age (LSA)		Low			
		Rock Art	None			
		Shel Middens	None			
	Graves / human remains: ESA &	High scientific & social significance				
IRON AGE	Early Iron Age (EIA)		None-Low			
	Middle Iron Age (MIA)		None			
	Later Iron Age (LIA)		High			
	Graves / human remains: EIA – High scientific significance; MIA & LIA – High scientific & social significance					
COLONIAL PERIOD	Colonial Period		None			
		LSA – Colonial Period Contact	None-Low			
		LIA – Colonial Period Contact	Medium			
		Industrial Revolution	Low			
		Apartheid & Struggle	High			
	Graves / human remains: Medium-high scientific & high social significance					

Table 3: Archaeological and basic cultural heritage probability assessment

2.2.2) The SAHRA 2009 MPD & SAHRIS


No archaeological Cultural Resources Management (CRM) reports are recorded in the SAHRA 2009 Mapping Project Database (MPD) situated within an approximate 5km radius from the *Ngqamakwe Phase* 5 Water Supply Project study site, while a number of SAHRIS cases are recorded with study sites situated within the 5km radius, but with the majority of the SAHRIS cases referring to a greater Amathole District borrow pit assessment, but including the initial CRM assessment for the Ngqamakwe water reticulation project. Relevant CRM reports are listed as:

- Anderson, G. 2009. (Umlando) Heritage Survey for the Nggamakwe Water Reticulation, Eastern Cape.
- Van Ryneveld, K. 2012. (ArchaeoMaps). Phase 1 Archaeological Impact Assessment Utilization of Borrow Pits, Amathole District Municipality, Eastern Cape, South Africa.

2.2.3) SAHRA Provincial Heritage Site Database – Eastern Cape

No declared geo-referenced Provincial Heritage Sites (PHS) are recorded in the SAHRA – Eastern Cape database (https://en.wikipedia.org/wiki/List_of_heritage_sites_in_Eastern_Cape) and situated within an approximate 5km radius from the Ngqamakwe Phase 5 Water Supply Project study site. The waypoint indicated on the SAHRIS map, in close proximity to Tsomo, is erroneously located and recorded as:

• SAHRA Identifier 9/2/026/0013: Cuthbert's Building, 110 Oxford Street, East London.

Map 4: Spatial distribution of geo-referenced PHSs in the SAHRA – Eastern Cape database in relation to the Ngqamakwe Phase 5 water Supply Project study site (https://en.wikipedia.org/wiki/List_of_heritage_sites_in_Eastern_Cape).

2.2.4) General Discussion

While the general area does yield Stone Age artefacts, these are more than often low density scatters of little archaeological significance, with types representing both the Earlier (ESA) and Middle Stone Ages (MSA). No Later Stone Age (LSA) site or scatter of artefacts have to date been recorded, aside from cases where artefacts were found in lag deposits associated with the MSA (Van Ryneveld 2012).

Iron Age sites, and exclusively Later Iron Age (LIA) are most frequently recorded (Anderson 2009, Van Ryneveld 2012), with type sites ranging from homestead and stone walled livestock enclosures to grave and cemetery sites, many of which are still in use and by implication of living heritage significance.

Infrequent Colonial Period sites have been recorded by Anderson (2009) and Van Ryneveld (2012).

The report by Anderson (2009) is of direct relevance to the *Ngqamakwe Phase* 5 *Water Supply Project*, having been the initial study for the greater Ngqamakwe water reticulation project. The study site assessed by Anderson comprise a much larger area, with the Ngqamakwe Phase 5 Water Supply Project study site being situated along the northern boundary of Anderson's assessment area. Anderson identified 26 heritage sites during is survey, with the majority of the sites being of LIA cultural tradition, dating to Colonial Period times and recorded as Historical / Colonial Period sites, listed as:

0	Site NGQ01	- Stone Age	- \$32°02′40.6″; E27°49′21.8″;
0	Site NGQ02	 Historical Period (incl. graves) 	- \$32°03'11.2"; E27°50'12.1";
0	Site NGQ03	 Historical Period (incl. graves) 	- \$32°03'15.5"; E27°51'42.5";
0	Site NGQ04	- Historical Period (graves)	- S32°04'01.1"; E27°54'14.2";
0	Site NGQ05	- Stone Age	- \$32°06'54.2"; E27°49'13.0";
0	Site NGQ06	- Historical Period	- \$32°08′53.1″; E27°51′24.5″;
0	Site NGQ07	 Historical Period (Colonial building) 	- \$32°07'46.5"; E27°54'06.4";
0	Site NGQ08	 Historical Period (incl. graves) 	- \$32°12′53.8″; E28°01′12.7″;
0	Site NGQ29	 Historical Period (incl. graves?) 	- \$32°13′50.11″; E27°55′25.8″;
0	Site NGQ10	- Stone Age	- \$32°13'42.8"; E27°48'43.8";
0	Site NGQ11	- Stone Age	- \$32°13'25.6"; E27°46'25.2";
0	Site NGQ12	- Historical Period (Colonial Mission Church)	- \$32°14'09.6"; E27°49'30.5";
0	Site NGQ13	- Stone Age	- \$32°16'30.1"; E27°49'35.9";
0	Site NGQ14	- Stone Age	- \$32°18′46.8″; E27°51′49.9″;
0	Site NGQ15	 Historical Period (Colonial Trade Post) 	- \$32°20'46.6"; E27°51'38.9";
0	Site NGQ16	- Historical Period	- \$32°03′47.5″; E27°57′33.1″;
0	Site NGQ17	- Historical Period	- \$32°06'14.2"; E27°55'46.2";
0	Site NGQ18	- Historical Period	- \$32°06′58.9″; E27°57′06.6″;

Phase 1 Archaeological & Cultural Heritage Impact Assessment -

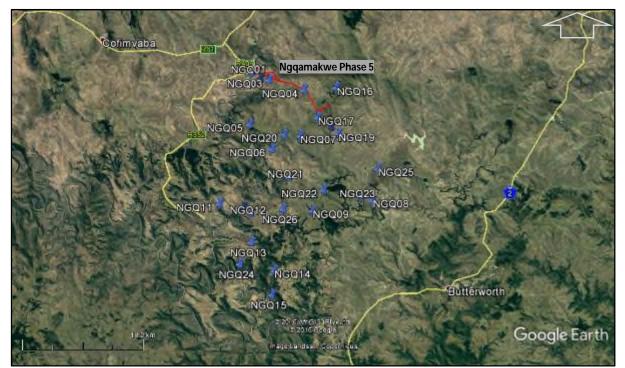
Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

- o Site NGQ19o Site NGQ20o Site NGQ21o Site NGQ22
- Site NGQ22
 Site NGQ23
- o Site NGQ23
- Site NGQ24
 Site NGQ25
- Site NGQ26

- Historical Period
- Historical Period
- Historical Period
- Historical Period (Colonial buildings)
- Historical Period
- Historical Period
- Historical Period
- Historical Period

- S32°07'31.7"; E27°57'47.0";
- \$32°07'40.9"; E27°52'33.1";
- \$32°11'09.4"; E27°53'05.4";
- S32°12'09.2"; E27°56'27.6";
- \$32°12'38.7"; E28°00'02.9";
- \$32°18'19.5"; E27°48'28.2";
- S32°10′18.8″; E28°01′38.8″; and
- S32°13′44.6″; E27°52′35.4″.

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC


2.2.1) Introduction

Anderson (2009) identified 26 heritage sites during the initial survey for the Ngqamakwe Water Project, with Sites NGQ01, NGQ02, NGQ03, NGQ04, NGQ16 and NGQ49 situated along the northern perimeter of the 2009 study site. Of the sites initially identified by Anderson (2009), only Site NGQ04 is of direct relevance and situated within the approximate 50-100m survey corridor of the Ngqamakwe Phase 5 Water Supply Project study site.

An additional 17 heritage sites were identified during the field assessment for the Ngqamakwe Phase 5 Water Supply Project, for consistency labelled Site NGQ27 – NGQ43. In totality 18 heritage sites are of relevance for development, including Sites NGQ27 – NGQ43 and Site NGQ04. Of the heritage sites, all comprise Later Iron Age tradition sites, aside from Site NGQ37, being the only Colonial Period site. By far the majority of Iron Age sites constitute grave or cemetery sites, clustered primarily in the village of Nxaybisa.

Despite proximity of many of the sites to the development alignment realignment of the line route is not proposed. The area is noticeably rich in Later Iron Age type sites, many of which are of living heritage significance. By inference realignment of the line route will simply result in a new set of resources being identified in proximity to a new proposed route. Recommendations of this report centre on the conservation of heritage sites situated within a rough 50-100m from the proposed development alignment, many of which within 10-20m from the line route. Recommendations for conservation is based on light weight temporary conservation measures during the course of construction, comprising of temporary heritage fencing (construction netting or a similar visually clear demarcation), and temporary heritage signage to indicate identified sensitive areas as 'NO ENTRY – HERITAGE SITE' zones. Proposed development will not result in the destruction of any identified heritage site and no mitigation prior to impact is recommended. It is not recommended that sites be permanently conserved (permanently fenced) without prior community consultation. All temporary conservation measures should be removed upon completion of construction.

Based on light weight temporary conservation recommended in this report it is imperative that heritage compliance reports on temporary conservation be submitted either by the ECO or an accredited heritage practitioner during the construction phase.

Map 5: Heritage sites identified by Anderson (2009) in relation to the Ngqamakwe Phase 5 Water Supply Project study site (red line)

2.2.2) Site Descriptions

2.2.2.1) Site NGQ27: Later Iron Age - Grave (S32°02'38.7"; E27°50'09.3")

Site NGQ27 comprise a LIA stone cairn grave. The grave is unfenced and situated approximately 50m from the proposed line route.

Site Significance and Recommendations: Site NGQ27 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction.

2.2.2.2) Site NGQ28: Later Iron Age – Livestock Enclosure (S32°02′53.3″; E27°50′34.6″)

Site NGQ28 comprise the foundation remains of a LIA livestock enclosure. The site is situated approximately 15m from the proposed line routes. At present, no conservation measures are in place.

Site Significance and Recommendations: Site NGQ28 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA Low Significance and a Generally Protected IV-C Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction, with a minimum approximate 10m conservation buffer zone between the site and the line route alignment.

2.2.2.3) Site NGQ29: Later Iron Age - Cemetery (S32°02'47.8"; E27°50'41.6")

Site NGQ29 comprise a LIA cemetery, containing modern style, stone cairn and stone outlined graves. The cemetery is situated within 50m from the proposed line route

Site Significance and Recommendations: Site NGQ29 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction. The temporary conservation fence should allow for a minimum 10m conservation buffer between the conservation fence and the development alignment.

2.2.2.4) Site NGQ30: Later Iron Age - Grave (S32°02'45.7"; E27°50'57.5")

Site NGQ30 comprise a LIA grave. The site is situated in a privately fenced area, where direct access to the line route was not possible. The presence of the rave warns against similar type sites that may be present in non-accessible areas. Onsite conservation measures, similar to that described for Site NGQ30 should be instated in cases where the line route pass through privately fenced areas containing graves.

Site Significance and Recommendations: Site NGQ30 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction. Preferably an approximate 10m conservation buffer should be maintained between graves and the development alignment.

2.2.2.5) Site NGQ31: Later Iron Age - Grave (S32°02'46.8"; E27°51'07.6")

Site NGQ27 comprise a LIA stone grave. The grave is situated within 10m from the proposed line route, but within an existing fenced area, with current conservation measures including a conservation fence complying with SAHRA / EC PHRA minimum standards for heritage site conservation.

Site Significance and Recommendations: Site NGQ31 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. The rave is situated within a formally fenced area. It is recommended that temporary site conservation signage be attached to the existing fence as cautionary measure during construction.

2.2.2.6) Site NGQ32: Later Iron Age - Cemetery (S32°02′51.9″; E27°51′12.2″)

Site NGQ32 comprise a LIA cemetery, containing modern style, stone cairn and stone outlined graves. The cemetery is situated directly along the proposed development alignment and slight realignment of the line route may be necessary.

Site Significance and Recommendations: Site NGQ32 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction. The temporary conservation fence should allow for a minimum 10m conservation buffer between the conservation fence and the development alignment. Slight realignment of the proposed line route may well be necessary to ensure prescribed conservation measures.

2.2.2.7) Site NGQ33: Later Iron Age - Graves (\$32°02'56.3"; E27°51'18.4")

Site NGQ33 comprise 2 LIA graves. The graves are not fenced and situated within 10m from the proposed development corridor.

Site Significance and Recommendations: Site NGQ33 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction. A minimum 10m heritage conservation buffer should be maintained between the conservation fence and the development alignment, which may require slight realignment to the line route.

2.2.2.8) Site NGQ34: Later Iron Age – Homestead (S32°02'54.0"; E27°51'18.7")

Site NGQ34 comprise a LIA homestead site, including amongst others the remains of 2 huts and a livestock enclosure. Smaller feature remains are visible on site, although artefacts remain extremely scares comprising only a few metal remains. The site is situated approximately 70m from the proposed development alignment.

Site Significance and Recommendations: Site NGQ34 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA Medium Significance and a Generally Protected IV-B Field Rating. Based on proximity from the proposed development alignment it is recommended that temporary signage be instated at the site during the construction phase to avoid accidental impact on the site.

Phase 1 Archaeological & Cultural Heritage Impact Assessment –

2.2.2.9) Site NGQ35: Later Iron Age - Grave (S32°03'02.1"; E27°51'19.2")

Site NGQ35 comprise an already fenced grave. The site is situated approximately 30m from the development corridor.

Site Significance and Recommendations: Site NGQ35 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary heritage signage be attached to the existing fence at the rave to ensure no accidental impact during the course of construction.

2.2.2.10) Site NGQ36: Later Iron Age - Graves (S32°02'40.8"; E27°50'44.2")

Site NGQ36 comprise of 2 LIA stone outlined graves. The unfenced graves are situated approximately 60m from the proposed development alignment.

Site Significance and Recommendations: Site NGQ36 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction.

2.2.2.11) Site NGQ37: Colonial Period – Residence (S32°02′38.5″; E27°50′52.8″)

Site NGQ37 constitute the only Colonial Period site identified during the field assessment. The site comprise the stone built wall remains of a residence. Site NGQ37 is situated more or less 20m from the proposed development alignment. A number of monolithic stones are found across the study site, these are interpreted as directly associated with Site NGQ37 and are farm, or farm camp fence post markers. Although of equal Colonial Period temporal significance, individual post markers are of such low heritage significance that individual recording and recommendations are not included in this report.

Site Significance and Recommendations: Site NGQ37 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA Medium Significance and a Generally Protected IV-B Field Rating. Based on proximity from the proposed development alignment it is recommended that temporary fencing and signage be instated at the site during the construction phase, allowing for a minimum 10m conservation buffer around the structure.

2.2.2.12) Site NGQ38: Later Iron Age - Cemetery (\$32°02'41.2"; E27°51'29.8")

Site NGQ38 comprise a LIA cemetery, situated within a privately fenced homestead yard, with current conservation measures (permanent fence) complying with SAHRA / EC PHRA minimum standards for heritage site conservation. Site NGQ38 is situated within 15m from the proposed line route.

Site Significance and Recommendations: Site NGQ38 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary heritage signage be attached to the existing conservation fence as cautionary measure during the course of construction.

Phase 1 Archaeological & Cultural Heritage Impact Assessment –

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

2.2.2.13) Site NGQ39: Later Iron Age - Cemetery (\$32°02'40.2"; E27°51'30.3")

Site NGQ39 comprise a LIA cemetery, including a few permanently fenced moderns style graves, as well as a number of stone cairn and stone outlined graves. The site is situated more or less 40m from the proposed line route.

Site Significance and Recommendations: Site NGQ39 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction.

2.2.2.14) Site NGQ40: Later Iron Age – Homestead (S32°02'42.1"; E27°51'33.0")

Site NGQ40 comprise a LIA homestead site, situated approximately 60m from the proposed development alignment. Site features include livestock enclosure remains as well as at least 2 hut foundation remains, while evidence of smaller associated built features is present on site. No associated artefacts or middens were identified

Site Significance and Recommendations: Site NGQ40 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA Medium Significance and a Generally Protected IV-B Field Rating. Based on proximity from the proposed development alignment it is recommended that temporary signage be instated at the site during the construction phase to avoid accidental impact on the site.

2.2.2.15) Site NGQ41: Later Iron Age – Homestead (\$32°03'42.7"; E27°53'58.2")

Site NGQ41 comprise a LIA homestead site, situated approximately 60m from the proposed development alignment and on the opposite site of the R409. Site features include livestock enclosure remains as well as residential hut remains. The site is permanently fenced.

Site Significance and Recommendations: Site NGQ41 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA Medium Significance and a Generally Protected IV-B Field Rating. Based on proximity from the proposed development alignment it is recommended that temporary signage be attached to the existing fence during the construction phase to avoid accidental impact on the site.

2.2.2.16) Site NGQ42: Later Iron Age - Grave (S32°03′55.4″; E27°54′26.2″)

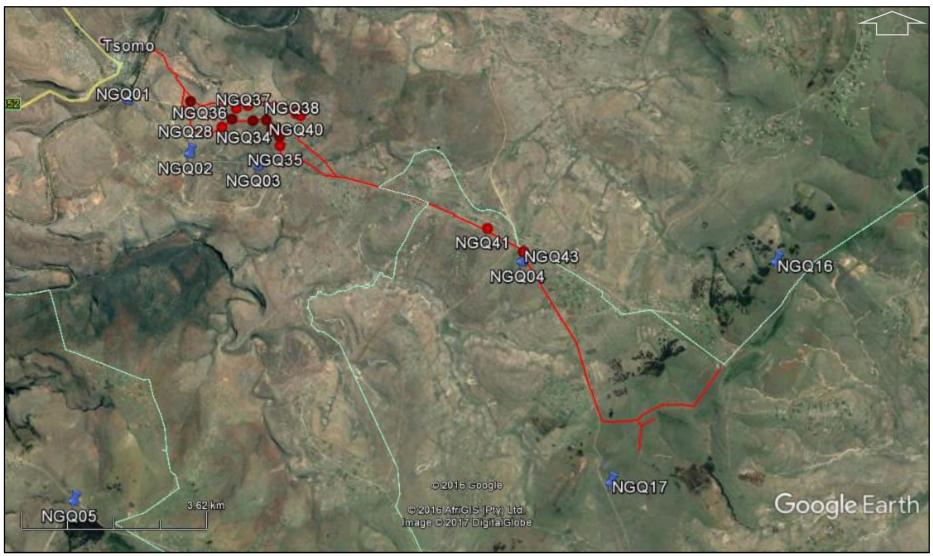
Site NGQ42 comprise a single, formally fenced grave. The grave is situated approximately 50m from the proposed development alignment.

Site Significance and Recommendations: Site NGQ42 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary heritage signage be attached at the existing fence to ensure no accidental impact on the site during the construction phase.

2.2.2.17) Site NGQ43: Later Iron Age - Grave (S32°03'55.4"; E27°54'26.8")

Site NGQ43 comprise a single, modern style grave. The grave is situated within a privately fenced homestead yard.

Site Significance and Recommendations: Site NGQ43 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary heritage signage be attached at the existing fence as cautionary measure, ensuring no accidental impact on the site during the course of construction.


Phase 1 Archaeological & Cultural Heritage Impact Assessment –

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

2.2.2.18) Site NGQ04: Later Iron Age - Grave (\$32°04'01.1"; E27°54'26.3")

Site NGQ04 was first recorded by Anderson (2009) and described as a single grave of High Significance, situated approximately 50m from the R409 and the proposed line route.

Site Significance and Recommendations: Site NGQ04 comprise a heritage site formally protected by the NHRA 1999. The site is ascribed a SAHRA / EC PHRA High / Medium Significance and a Generally Protected IV-A Field Rating. It is recommended that temporary site conservation measures, including a temporary fence and signage be instated for the duration of construction.

Map 6: Results of the field assessment

Map 7: Results of the field assessment (Close-up of Nxaybisa village)

Map 8: Results of the field assessment (Close-up of Mjula village)

Plate 1: Site NGQ27

Plate 2: Site NGQ28

Plate 3: Site NGQ29 [1]

Plate 4: Site NGQ29 [2]

Plate 5: NGQ29 [3]

Plate 6: Site NGQ30

Plate 7: Site NGQ31

Plate 8: Site NGQ32 [1]

Plate 9: Site NGQ32 [2]

Plate 10: Site NGQ32 [3]

Plate 11: Site NGQ33

Plate 12: Site NGQ34

Plate 13: Site NGQ35

Plate 14: Site NGQ36

Plate 15: Site NGQ37

Plate 16: Typical monolithic farm, or farm camp fence post markers, associated with Site NGQ37

Plate 17: Site NGQ38

Plate 18: Site NGQ39

Plate 19: Site NGQ40 [1]

Plate 20: Site NGQ40 [2]

Plate 21: Site NGQ41

Plate 22: Site NGQ42

Plate 23: Site NGQ43

Plate 24: Site NGQ4 (Anderson 2009)

3 - Environmental Impact Assessment Rating

Identified archaeological and cultural heritage resources are ascribed an Environmental Impact Assessment (EIA) rating, based on the outline presented below to provide a significance rating of development impact on resources, both during the 1) construction and 2) operation and use phases of development (in accordance with NEMA 1998, Regulations 2014):

Overall Nature:	 Negative (negative impact on affected biophysical or human environment), or Positive (benefit to the affected biophysical or human environment).
Туре:	 Direct (caused by the action and occur at the same time and place), Indirect or secondary (caused by the action and are later in time or father removed in distance but reasonably foreseeable), or Cumulative (impact which results from the incremental impact of the action when added to other past, present and reasonably foreseeable future actions; can result from individually minor, but collectively significant actions taking place over a period of time).
Spatial Extent:	 Site (immediate area of activity, incorporating a 5m zone from the edge of the affected area), Local (area up to and/or within 10km from the 'site' as defined above), Regional (entire community, basin or landscape), or National (South Africa).
Duration:	 Short-term (impact would last for the duration of activities; quickly reversible), Medium-term (impact would affect project activity; reversible over time), Long-term (impact would continue beyond project activity), or Permanent (impact would continue beyond decommissioning).
Severity:	1) Low, 2) Medium, or 3) High, being +) Positive, or -) Negative (based on separately described categories examining whether the impact is destructive or benign, whether it destroys the impacted environment, alters its functionality or slightly alters he environment itself).
Reversibility:	1) Completely reversible (completely reversible impact with implementation of correct mitigation measures),
	 2) Partly reversible (partly reversible impact with implementation of correct mitigation measures), or 3) Irreversible (impact cannot be reversed, regardless of mitigation or rehabilitation measures).
Irreplaceable loss:	 Resource will not be lost (resource will not be lost provided mitigation measures are implemented), Resource will be partly lost (partial loss or destruction of the resource will occur even though management and mitigation measures are implemented), or Resource cannot be replaced (resource is irreplaceable no matter which management or mitigation measures are implemented).
Probability:	 1) Unlikely (<40% probability), 2) Possible (40% probability), 3) Probable (>70% probability), or 4) Definite (>90% probability).
Mitigation potential:	 High or completely mitigatable (relatively easy and cost effective to manage. Specialist expertize and equipment generally not required. Nature of impact easily understood and may be mitigated through implementation of a management plan or 'good housekeeping', including regular monitoring and reporting regimes. Significance of the impact after mitigation is likely to be low or negligible), Moderate or partially mitigatable (management requires higher level of expertise and resources to maintain impacts with acceptable levels. Mitigation can be tied up in the design of the project. Significance of the impacts after mitigation is likely to be low to moderate. It may not be possible to mitigate the impact entirely, with residual impacts resulting), or Low or un-mitigatable (will not be possible to mitigate the impact entirely, regardless of expertise and resources. Potential to manage the impacts may be beyond the scope of the project. Management of the impact is not likely to result in a measurable change in the level of significance).
Impact significance:	 Negligible, Low (largely of HIGH mitigation potential, after consideration of other criteria), Moderate (largely of MODERATE or partial mitigation potential, after consideration of other criteria), or Substantial (largely of LOW mitigation potential, after consideration of other criteria).

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

	Environmental Impact Assessment Rating: Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape											
Potential Impacts	Overall nature	Туре	Spatial extent	Duration	Severity	Reversibility	Irreplaceable loss	Probability	MITIGATION POTENTIAL	IMPACT Significat	NCE	MITIGATION MEASURES
										Without mitigation	With mitigation	
SITES: NGQ27,	NGQ28, NGQ2	9, NGQ30, NG	Q31, NGQ32, N	IGQ33, NGQ34,	, NGQ35, NGQ	36, NGQ37, NGQ3	8, NGQ39, NGQ4	0, NGQ41, NGC	42, NGQ43 and NG	Q04	-	
Construction phase	Negative	Direct	Site	Permanent	High Negative	Irreversible	Resource cannot be replaced	Definite	Low / Unmitigatable	Moderate	Negligible	Heritage Site Conservation (Temporary heritage conservation measures during the course of construction)
Operational phase	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mitigation detail	s: Temporary he	ritage conserva	tion measures (f	ence & signage)	during the cons	struction phase. All	temporary conserva	ation measures sl	nould be removed upo	on completion	of construction	1

Table 4: Environmental Impact Assessment Rating

With reference to archaeological and cultural heritage compliance, as per the requirements of the NHRA 1999, it is recommended that the proposed *Ngqamakwe Phase 5 Water Supply Project*, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape, proceed as applied for, provided the developer comply with the below listed heritage recommendations.

Seventeen (17) newly identified and one (1) known heritage site, totalling eighteen (18) heritage sites are situated within the approximate 50-100m survey corridor of the proposed *Ngqamakwe Phase 5 Water Supply Project*. Identified heritage sites comprise primarily Later Iron Age (LIA) grave and informal cemetery sites. Realignment of the line route is not recommended; realignment may well simply result in a new set of heritage sites to me managed during development in the heritage rich area. Recommended temporary conservation measures are based on temporary fencing and signage during the construction phase. All temporary conservation measures should be removed upon completion of construction. Development in the vicinity of unfenced, informal graves or cemeteries should not encroach within 10m from the burial places.

- > The proposed development poses no 'fatal flaws' with reference to archaeological and cultural heritage resources.
- > The development will have a limited negative visual and cumulative impact on the cultural landscape during the construction phase and no negative visual and cumulative impact during the operational phase.
- It is recommended that a heritage specialist / ECO report on heritage compliance to the EC PHRA during the construction phase of the development.
- [In the event of any incidental archaeological and cultural heritage resources, as defined and protected by the NHRA 1999, being identified during the course of development the process described in 'Appendix B: Heritage Protocol for Incidental Finds during the Construction Phase' should be followed.]

Horitago Complianco Summary

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape							
Map Code	Site	Co-ordinates	Recommendations				
Nggamakwe Phase 5 Water Supply Project							
Site NGQ27	Later Iron Age – Grave	S32°02'38.7"; E27°50'09.3"	Temporary heritage conservation fencing and signage				
Site NGQ28	Later Iron Age – Livestock enclosure	S32°02'53.3"; E27°50'34.6"	Temporary heritage conservation fencing and signage				
Site NGQ29	Later Iron Age – Cemetery	S32°02'47.8"; E27°50'41.6"	Temporary heritage conservation fencing and signage				
Site NGQ30	Later Iron Age – Grave	\$32°02'45.7"; E27°50'57.5"	Temporary heritage conservation fencing and signage				
Site NGQ31	Later Iron Age – Grave	S32°02'46.8"; E27°51'07.6"	Temporary heritage signage				
Site NGQ32	Later Iron Age – Cemetery	S32°02'51.9"; E27°51'12.2"	Temporary heritage conservation fencing and signage				
Site NGQ33	Later Iron Age – Graves	S32°02'56.3"; E27°51'18.4"	Temporary heritage conservation fencing and signage				
Site NGQ34	Later Iron Age – Homestead remains	S32°02'54.0"; E27°51'18.7"	Temporary heritage signage				
Site NGQ35	Later Iron Age – Grave	S32°03'02.1"; E27°51'19.2"	Temporary heritage signage				
Site NGQ36	Later Iron Age – Graves	\$32°02'40.8"; E27°50'44.2"	Temporary heritage conservation fencing and signage				
Site NGQ37	Colonial Period – Residence	\$32°02'38.5"; E27°50'52.8"	Temporary heritage conservation fencing and signage				
Site NGQ38	Later Iron Age – Cemetery	S32°02'41.2"; E27°51'29.8"	Temporary heritage signage				
Site NGQ39	Later Iron Age – Cemetery	\$32°02'40.2"; E27°51'30.3"	Temporary heritage conservation fencing and signage				
Site NGQ40	Later Iron Age – Homestead remains	S32°02'42.1"; E27°51'33.0"	Temporary heritage signage				
Site NGQ41	Later Iron Age – Homestead remains	S32°03'42.7"; E27°53'58.2"	Temporary heritage signage				
Site NGQ42	Later Iron Age – Grave	S32°03'55.4"; E27°54'26.2"	Temporary heritage signage				
Site NGQ43	Later Iron Age – Grave	\$32°03'55.4"; E27°54'26.8"	Temporary heritage signage				
Site NGQ04	Later Iron Age – Grave	S32°04'01.1"; E27°54'26.3"	Temporary heritage conservation fencing and signage				

 Table 5: Heritage compliance summary

The EC PHRA-APM Unit HIA Comment will state legal requirements for development to proceed, or reasons why, from a heritage perspective, development may not be further considered.

Phase 1 Archaeological & Cultural Heritage Impact Assessment –

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

Notes:

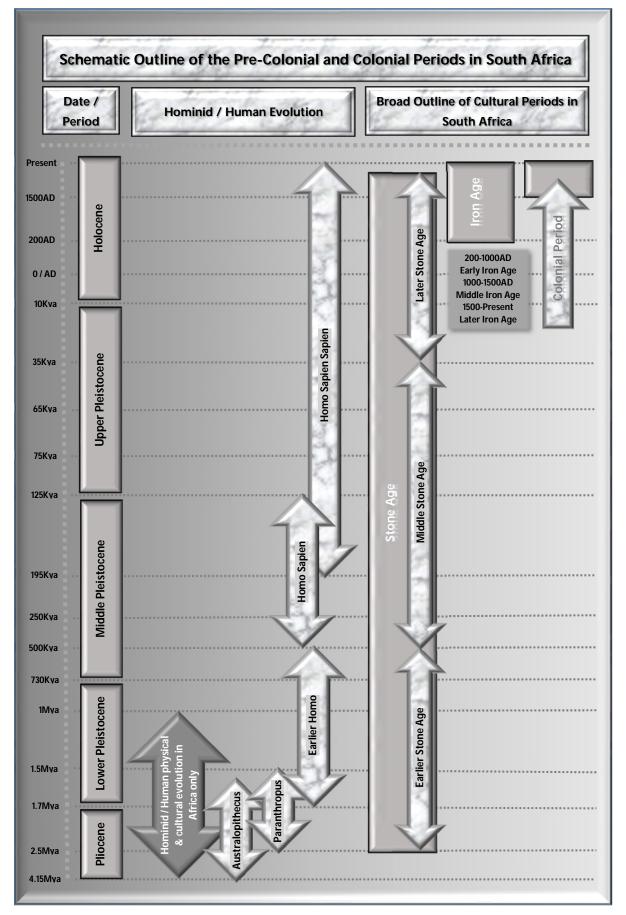
Should any registered Interested & Affected Party (I&AP) wish to be consulted in terms of Section 38(3)(e) of the NHRA 1999 (socio-cultural consultation / SAHRA SIA) it is recommended that the developer / EAP ensures that the consultation be prioritized within the timeframe of the environmental assessment process.

27

Simplified Guide to the Identification of Archaeological Sites:

- Stone Age Knapped stone display flakes and flake scars that appear unnatural and may result in similar type 'shaped' stones often concentrated in clusters or forming a distinct layer in the geological stratigraphy. ESA shapes may represent 'pear' or oval shaped stones, often in the region of 10cm or larger. Typical MSA types include blade-like or rough triangular shaped artefacts, often associated with randomly shaped lithics or flakes that display use- or edge-wear around the rim of the artefact. LSA types are similar to MSA types, but generally smaller (≤3cm in size), often informally shaped, and are frequently found in association with bone, pieces of charcoal, ceramic shards and food remains.
 - Rock Art Includes both painted and engraved images.
 - **Shell Middens** Include compact shell lenses that may be quite extensive in size or small ephemeral scatters of shell food remains, often associated with LSA artefact remains, but may also be of MSA and Iron Age cultural association.
- Iron Age Iron Age sites are often characterized by stone features, i.e. the remains of former livestock enclosures or typical household remains; huts are identified by either mound or depression hollows. Typical artefacts include ceramic remains, farming equipment, beads and trade goods, metal artefacts (including jewellery) etc. Remains of the 'Struggle' events, histories and landmarks associated therewith are often, based on cultural association, classed as part of the Iron Age heritage of South Africa.
- Colonial Period Built environment remains, either urban or rural, are of a Western cultural affiliation with typical artefacts representing early Western culture, including typical household remains, trade and manufactured goods, such as old bottle, porcelain and metal artefacts. War memorial remains, including the vast array of associated graves and the history of the Industrial Revolution form important parts of South Africa's Colonial Period heritage.

5 – Acronyms & Abbreviations


AD	· Anno Domini (the year 0)
AIA	: Anno Domini (the year 0)
AMAFA	: Archaeological Impact Assessment : Amafa aKwaZulu-Natali (Natal PHRA)
ASAPA	
	: Association of Southern African Professional Archaeologists
BAR	: Basic Assessment Report
BC	: Before the Birth of Christ (the year 0)
BCE	: Before the Common Era (the year 0)
BID	: Background Information Document
BP	: Before the Present (the year 0)
cm	: Centimetre
CMP	: Conservation Management Plan
CRM	: Cultural Resources Management
DAC	: Department of Arts and Culture
DEAT	: Department of Environmental Affairs and Tourism
DME	: Department of Minerals and Energy
EAP	: Environmental Assessment Practitioner
ECO	: Environmental Control Officer
ELO	: Environmental Liaison Officer
EC PHRA	Eastern Cape Provincial Heritage Resources Authority
EIA ₁	: Environmental Impact Assessment
EIA ₂	: Early Iron Age
EMPr	: Environmental Management Plan / Programme Report
ESA	: Earlier Stone Age
ha	: Hectare
HIA	: Heritage Impact Assessment
HWC	: heritage Western Cape
ICOMOS	: International Council on Monuments and Sites
IEM	: Integrated Environmental Management
km	: kilometre
Куа	: Thousands of years ago
LIA	: Later Iron Age
LSA	: Later Stone Age
m	: metre
m²	: Square meter
MIA	: Middle Iron Age
Mm	: millimetre
MPRDA 2002	: Mineral and Petroleum Resources Development Act, No 28 of 2002
MSA	: Middle Stone Age
Mya	: Millions of years ago
NEMA 1998	: National Environmental Management Act, No 107 of 1998
NHRA 1999	: National Heritage Resources Act, No 25 of 1999
PIA	: Palaeontological Impact Assessment
PHRA	: Provincial Heritage Resources Authority
PSSA	: Palaeontological Society of South Africa
PPP	: Public Participation Process
SAHRA	: South African Heritage Resources Agency
SAHRIS	: South African Heritage Resources Information System
SIA	: Social Impact Assessment

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

- Anderson, G. 2009. (Umlando) Heritage Survey for the Ngqamakwe Water Reticulation, Eastern Cape. 1.
- South African Government. (No 25 of) 1999. National Heritage Resources Act. 2.
- 3. Van Ryneveld, K. 2012. (ArchaeoMaps). Phase 1 Archaeological Impact Assessment – Utilization of Borrow Pits, Amathole District Municipality, Eastern Cape, South Africa.

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

Heritage Impact Assessment (HIA) – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, Eastern Cape

Heritage Protocol for Incidental Finds during the Construction Phase

Should any palaeontological, archaeological or cultural heritage resources, including human remains / graves, as defined and protected by the NHRA 1999, be identified during the construction phase of development (including as a norm during vegetation clearing, surface scraping, trenching and excavation phases), it is recommended that the process described below be followed.

> On-site Reporting Process:

- 1. The identifier should immediately notify his / her supervisor of the find.
- 2. The identifier's supervisor should immediately (and within 24 hours after reporting by the identifier) report the incident to the onsite SHE / SHEQ officer.
- 3. The on-site SHE / SHEQ officer should immediately (and within 24 hours after reporting by the relevant supervisor) report the incident to the appointed ECO / ELO officer. [Should the find relate to human remains the SHE / SHEQ officer should immediately notify the nearest SAPS station informing them of the find].
- 4. The ECO / ELO officer should ensure that the find is within 72 hours after the SHE / SHEQ officers report reported on SAHRIS and that a relevant heritage specialist is contacted to make arrangements for a heritage site inspection. [Should the find relate to human remains the ECO / ELO officer should ensure that the archaeological site inspection coincides with a SAPS site inspection, to verify if the find is of forensic, authentic (informal / older than 60 years), or archaeological (older than 100 years) origin].
- 5. The appointed heritage specialist should compile a 'heritage site inspection' report based on the site specific findings. The site inspection report should make recommendations for the destruction, conservation or mitigation of the find and prescribe a recommended way forward for development. The 'heritage site inspection' report should be submitted to the ECO / ELO, who should ensure submission thereof on SAHRIS.
- 6. SAHRA / the relevant PHRA will state legal requirements for development to proceed in the SAHRA / PHRA Comment on the 'heritage site inspection' report.
- 7. The developer should proceed with implementation of the SAHRA / PHRA Comment requirements. SAHRA / PHRA Comment requirements may well stipulate permit specifications for development to proceed.
 - Should permit specifications stipulate further Phase 2 archaeological investigation (including grave mitigation) a suitably accredited heritage specialist should be appointed to conduct the work according to the applicable SAHRA / PHRA process. The heritage specialist should apply for the permit. Upon issue of the SAHRA / PHRA permit the Phase 2 heritage mitigation program may commence.
 - Should permit specifications stipulate destruction of the find under a SAHRA / PHRA permit the developer should immediately proceed with the permit application. Upon the issue of the SAHRA / PHRA permit the developer may legally proceed with destruction of the palaeontological, archaeological or cultural heritage resource.
 - Upon completion of the Phase 2 heritage mitigation program the heritage specialist will submit a Phase 2 report to the ECO / ELO, who should in turn ensure submission thereof on SAHRIS. Report recommendations may include that the remainder of a heritage site be destroyed under a SAHRA / PHRA permit.
 - Should the find relate to human remains of forensic origin the matter will be directly addressed by the SAPS: A SAHRA / PHRA permit will not be applicable.

<u>NOTE:</u> Note that SAHRA / PHRA permit and process requirements relating to the mitigation of human remains requires suitable advertising of the find, a consultation, mitigation and re-internment / deposition process.

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

Phase 1 Archaeological & Cultural Heritage Impact Assessment –

- 1. The supervisor should immediately upon reporting by the identifier ensure that all work in the vicinity of the find is ceased.
- 2. The supervisor should ensure that the location of the find is immediately secured (and within 12 hours of reporting by the identifier), by means of a temporary conservation fence (construction netting) allowing for a 5-10m heritage conservation buffer zone around the find. The temporary conserved area should be sign-posted as a 'No Entry Heritage Site' zone.
- 3. Where development has impacted on the resource, no attempt should be made to remove artefacts / objects / remains further from their context, and artefacts / objects / remains that have been removed should be collected and placed within the conservation area or kept for safekeeping with the SHE / SHEQ officer. It is imperative that where development has impacted on palaeontological, archaeological and cultural heritage resources the context of the find be preserved as good as possible for interpretive and sample testing purposes.
- 4. The supervisor should record the name, company and capacity of the identifier and compile a brief report describing the events surrounding the find. The report should be submitted to the SHE / SHEQ officer at the time of the incident report.

> Duties of the SHE / SHEQ Officer:

- 1. The SHE / SHEQ officer should ensure that the location of the find is recorded with a GPS. A photographic record of the find (including implementation of temporary conservation measures) should be compiled. Where relevant a scale bar or object that can indicate scale should be inserted in photographs for interpretive purposes.
- 2. The SHE / SHEQ officer should ensure that the supervisors report, GPS co-ordinate and photographic record of the find be submitted to the ECO / ELO officer. [Should the find relate to human remains the SHE / SHEQ officer should ensure that the mentioned reporting be made available to the SAPS at the time of the incident report].
- 3. Any retrieved artefacts / objects / remains should, in consultation with the ECO / ELO officer, be deposited in a safe place (preferably on-site) for safekeeping.

> Duties of the ECO / ELO officer:

- 1. The ECO / ELO officer should ensure that the incident is reported on SAHRIS. (The ECO / ELO officer should ensure that he / she is registered on the relevant SAHRIS case with SAHRIS authorship to the case at the time of appointment to enable heritage reporting].
- 2. The ECO / ELO officer should ensure that the incident report is forwarded to the heritage specialist for interpretive purposes at his / her soonest opportunity and prior to the heritage site inspection.
- 3. The ECO / ELO officer should facilitate appointment of the heritage specialist by the developer / construction consultant for the heritage site inspection.
- 4. The ECO / ELO officer should facilitate access by the heritage specialist to any retrieved artefacts / objects / remains that have been kept in safekeeping.
- 5. The ECO / ELO officer should facilitate coordination of the heritage site inspection and the SAPS site inspection in the event of a human remains incident report.
- 6. The ECO / ELO officer should facilitate heritage reporting and heritage compliance requirements by SAHRA / the relevant PHRA, between the developer / construction consultant, the heritage specialist, the SHE / SHEQ officer (where relevant) and the SAPS (where relevant).

> Duties of the Developer / Construction Consultant:

The developer / construction consultant should ensure that an adequate heritage contingency budget is accommodated within the project budget to facilitate and streamline the heritage compliance process in the event of identification of incidental palaeontological, archaeological and cultural heritage resources during the course of development, including as a norm during vegetation clearing, surface scraping, trenching and excavation phases, when resources not visible at the time of the surface assessment may well be exposed.

Phase 1 Archaeological & Cultural Heritage Impact Assessment –

Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

Resumé Karen van Ryneveld 2017

	2017				
Name:	Karen van Ryneveld				
Contact Details:	1) Mobile – 084 871 1064				
	2) E-mail – karen@archaeomaps.co.za				
	3) Website – www.archaeomaps.co.za 4) Postal address – Postnet Suite 239, Private Bag X3, Beacon Bay, 5205				
Compony					
Company:	ArchaeoMaps cc				
Occupation:	Archaeologist				
Qualification:	MSc Archaeology (WITS University – 2003)				
Accreditation:	1) Association of Southern African Professional Archaeologists (ASAPA) accredited Cultural Resources Management CRM practitioner [member nr – 163]				
	 2010 – ASAPA CRM Section: Principle Investigator – Stone Age 				
	 2005 – ASAPA CRM Section: Field Director – Iron Age & Colonial Period 				
	2) SAHRA, AMAFA, EC PHRA and HWC listed ASAPA accredited CRM archaeologist				
Tertiary Education					
2015 – Present	University of Fort Hare (UFH), East London (MPhil Environmental Studies)				
2010	University of South Africa (UNISA), Pretoria (Project Management 501)				
2006 – 2007	Nelson Mandela Metropolitan University (NMMU), Port Elizabeth (Undergraduate Certificate in				
	Geographical Information Systems – GIS)				
2001 – 2003	University of the Witwatersrand (WITS), Johannesburg (MSc Archaeology)				
1999 – 2000	University of Pretoria (UP), Pretoria (BA Hons. Archaeology)				
1991 – 1993	University of Pretoria (UP), Pretoria (BA Archaeology & History of Art)				
Courses					
2016/01	SPA (Safety Passport Alliance) – Petrol Retail [SA Safety Management Training Services – SMST]				
Employment – Profess					
2007/04 – Present	ArchaeoMaps [Self-employed] (Archaeologist – CRM)				
2006/06 - 2007/03	National Museum, Bloemfontein (Archaeologist – CRM, Dept. of Archaeology)				
2005/04 – 2006/05 2004/04 – 2005/01	McGregor Museum, Kimberley (Archaeologist – CRM / Research, Dept. of Archaeology) Amafa aKwaZulu-Natali (HoD: Archaeology, Palaeontology & Meteorites Unit – APM Unit)				
2004/04 - 2005/01 2002/09 - 2004/03	McGregor Museum, Kimberley (Archaeologist – CRM / Research, Dept. of Archaeology)				
2002/09 - 2004/05	wicoregor waseum, kimbeney (Archaeologist – ckw/ kesearch, bept. or Archaeology)				
Employment – Freelan	ce: Ground Penetrating Radar				
2015/10 – Present	Terra Scan assistant (BCM area, EC) – GPR & underground utilities focussing on petrol retail (oil & gas) industry				
Archaeology – Summa					
approximately 500 Phase provinces and the Free S independent archaeologi large scale Phase 2 Store	d in CRM archaeology since 2003 and has been the author (including selected co-authored reports) of e 1 AIA studies. Phase 1 AIA work is centred in South Africa, focussing on the Northern and Eastern Cape state. She has also conducted Phase 1 work in Botswana (2006 / 2007). In 2007 she started ArchaeoMaps, an ical and heritage consultancy. In 2010 she was awarded ASAPA CRM Principle Investigator (PI) status based on e Age mitigation work (De Beers Consolidated Mines – Rooipoort, Northern Cape, 2008 / 2009) and has also er of other Phase 2 projects including Stone Age, Shell Middens, Grave / Cemetery projects and Iron Age sites.				
In addition to CRM archa Grootkloof, Ghaap Platea	aeology she has been involved in research, including the international collaborations at Maloney's Kloof and au, Northern Cape (2005 / 2006). Archaeological compliance experience includes her position as Head of the				

Company Profile

Company Name Registration Number VAT Number Accountant Members / Shareholders **BBBEE Status**

: ArchaeoMaps cc : 2005/180719/23 : Not VAT Registered : AZIMA Financial Services : Karen van Ryneveld (100%) : Exempted Micro Enterprise (EME)

Archaeology, palaeontology and Meteorites (APM) Unit at AMAFA aKwaZulu-Natali (2004).

Phase 1 Archaeological & Cultural Heritage Impact Assessment – Ngqamakwe Phase 5 Water Supply Project, near Tsomo, Chris Hani and Amathole District Municipalities, EC

PART C4.3: AQUATIC INVESTIGATION REPORT

BUTTERWORTH DROUGHT RELIEF PROJECT:

CONSTRUCTION OF A NEW 7ML RESERVOIR AND A PIPELINE FROM THE TSOMO RIVER TO RELEASE WATER INTO UPPER TRIBUTARIES OF THE XILINKA RIVER FLOWING INTO THE XILINKA DAM

AQUATIC HABITAT AND BIOTA STUDY

Report prepared for

INDWE ENVIRONMENTAL CONSULTING CC

MAY 2017

by

Anton Bok Aquatic Consultants cc 5 Young Lane, Mill Park, Port Elizabeth 6001 Tel.: 041 3733464

email: antonbok@aquabok.co.za

ANTON BOK AQUATIC CONSULTANT 8

Trading as ANTON BOK & ASSOCIATES

EXECUTIVE SUMMARY

Project Proposal

The Butterworth Drought Relief Project proposals include:

- a) The construction of a water supply pipeline from the Tsomo River to the upper Xilinka River, which flows into the Xilinka Dam;
- b) The construction of a 7ML Reservoir on a high ridge upslope of the Xilinka River catchment;
- c) The proposed release of between 130 l/s and 300 l/s of raw water pumped from the Tsomo River into the upper tributaries of the Xilinka River.

Purpose of the Study and Methods used

This specialist aquatic study was undertaken to provide the relevant aquatic impact assessment report contributing to the environmental impact assessment in terms of EIA Regulations of December 2014, pertaining to the National Environmental Management Act, 1998 for the above project. In addition, the environmental data presented will feed into the Water Use Licence Application (WULA) for this project in terms of Section 21(c) and (i) of the National Water Act, 1998. Data from previous ecological studies undertaken in the area were obtained from available databases and published reports. In addition, a field inspection was undertaken on 9th May 2017 of the proposed pipeline route and receiving tributaries, with particularly attention given to the watercourses potentially impacted by this activity.

Characteristics of the Sites

Conservation Planning Studies

The National Freshwater Ecosystem Priority Areas (NFEPA) study (Driver et al. 2011), classified the catchments of two watercourses along the water pipeline route and the receiving tributaries of the Xilinka Rver as being insignificant in terms of freshwater ecosystem conservation. The DWS (2014) review study on South African rivers gave the **PES** designation for both river reaches in the sub-quaternary catchment along the pipeline route (S50J - 7068 and S50J -7104), as being in a **C-category** (i.e. moderately modified with the ecosystem functions predominantly unchanged). The **ecological importance (EI)** and the **ecological sensitivity (ES)** of the both river reaches at the pipeline crossings were designated in the DWS (2014) study as **moderate**. The field investigation showed both these sites to be highly degraded and largely modified, with both sites thus considered to have a **D** category **PES**. The receiving tributary in the upper Xilinka River (sub-quaternary S70C – 7065) consisted of a badly eroded gulley or donga, with a **PES** in a **D** category with **moderate** ecological importance (**EI**) and ecological sensitively (**ES**) values (DWS 2014).

Aquatic Biota

The highly degraded ecological state of the aquatic habitats, as well as the absence of permanent surface water throughout the year, indicates that the affected watercourses are unable to support important aquatic biota of conservation value.

Assessment of Potential Impacts and Proposed Mitigation

Potential Impacts

Impacts potentially associated with the proposed project include:

- 1. Increased sedimentation and elevated turbidity associated with disturbance of the stream banks and bed and removal of riparian vegetation during pipeline construction and channel erosion due to release of water into upper tributaries of the Xilinka River;
- 2. Water pollution due to spillages of harmful chemicals used during construction entering the watercourses.

Proposed Mitigation

The two potential impacts mentioned above could be reduced to low significance by a) implementing appropriate ant-erosion measures at the various structures to be built; b) by ensuring that construction activities are carefully managed to prevent any pollution, and c) extending the pipeline further downstream in the upper Xilinka River to discharge into a relatively stable section of the receiving tributary.

To ensure that no environmental impacts arise during the operational phase in the project, the construction sites should be regularly inspected for flood damage or erosion and any required repairs should be undertaken without delay.

Conclusion

If the mitigation measures as recommended in this report are carefully implemented, the construction and operation of the proposed Butterworth drought relief project proposals should have an insignificant impact on the current functioning and present ecological state (PES) of the various watercourses impacted. The project is therefore considered to present a **low risk** to the ecological integrity of the affected aquatic habitats. It is therefore recommended that the proposed activity should be authorised, subject to the incorporation of the mitigation measured recommended in this report.

TABLE OF CONTENTS

1.	INTRO	DUCTION	1
1.1	Projec	t Overview	1
1.2	Terms	of Reference	2
1.3	Metho	ds	2
1.4	Assum	options and Limitations	2
1.5	Details	s of Author	2
2.	DESCR	RIPTION OF NATURAL ENVIRONMENTAL AT THE PROJECT SITES	3
2.1	2.1.1 2.1.2	ption of Sites Watercourse Crossing A Watercourse Crossing B (Mjula Stream) Release tributary	3 3 4 5
2.2	Existin 2.2.1 2.2.2	ng Spatial Biodiversity and Conservation Planning Data National Freshwater Ecosystem Priority Areas project (Driver et al. 2011) Present Ecological Status (PES), Ecological Importance (EI) and Ecological Sensitivity (ES) of South African Rivers (DWS 2014)	6 7 7
2.3	Aquati	c Biota	8
3.	ASSES	SSMENT OF POTENTIAL IMPACTS	9
3.1	Overvi	ew	9
3.2	3.2.1	sment of Potential Impacts and proposed mitigation Increased Sedimentation and Elevated Turbidity Water Quality: Chemical Pollutants Monitoring Requirements	9 9 11 11
3.3	Conclu	uding Statement	12
4.	REFER	RENCES	13
LIST O	F FIGUI	RES	
Figure	1.	General locality map of the proposed pipeline from the Tsomo River to the upper reaches of the Xilinka River	1
Figure	2.	Google Earth overlay of proposed pipeline crossing locations over Watercourse A. The red line marks the preferred crossing site (pers. comm. Dr B van der Waal).	3
Figure	3.	Google Earth image of pipeline crossing of Watercourse B (Mjula Stream) parallel to the R409.	4
Figure	4.	Upper Xillinka River showing proposed (yellow lines) and recommended (white line) water release points, as well as a road crossing about 5 km downstream (by river) of the release point	5
Figure	5.	The NFEPA map covering the study area (light red oval) (from Driver et al. 2011)) 7

LIST OF PLATES

Plate 1.	Proposed pipeline route (dotted white line) at preferred crossing location of Watercourse A, as seen from the right bank of the watercourse (dry donga)	3
Plate 2.	Pipeline crossing of Watercourse B (Mjula Stream) next to (west of) the R409	4
Plate 3.	Recommended release location in eroded channel below existing earth dam	6
Plate 4.	Eroded donga downstream of earth dam at proposed release point	6
Plate 5.	Eroded dam wall upstream of proposed water release point, looking upstream	6
Plate 6.	Problematic road crossing some 5 km downstream of release point (looking upstream)	6
LIST OF	TABLES	
Table 1.	. The PES, EI and ES of the sub-quaternary catchments within which the proposed projects are located, taken from DWS (2014).	7

1. INTRODUCTION

1.1 PROJECT OVERVIEW

The Drought Relief Project proposals for Butterworth include:

- d) The construction of a water supply pipeline over a distance of approximately 13.6 km from the existing Tsomo River pump-station near Tsomo Town to two potential release points in upper tributaries of the Xilinka River, located about 16.4 km upstream (by river) of the Xilinka Dam,
- e) The construction of a 7ML Reservoir on a high ridge upslope of the Xilinka River catchment, about 2 km north-west of the pipeline branch-off to the proposed water release points.
- f) The proposed release of between 130 l/s and 300 l/s of raw water pumped from the Tsomo River into the upper tributaries of the Xilinka River.

The infrastructure associated with the project and the topographical features are shown in Figure 1 below.

Figure 1. General locality map of the proposed pipeline from the Tsomo River to the upper reaches of the Xilinka River.

1.2 Terms of Reference

The main aim of this investigation is to provide the relevant specialist aquatic report forming part of the environmental impact assessment in terms of EIA Regulations of December 2014, pertaining to the National Environmental Management Act, 1998 for the above project. In addition, the study was designed to contribute relevant environmental information to support the Water Use Licence Application (WULA) in terms of Section 21(c) & (i) of the National Water Act, 1998. This investigation thus involved the following:

1. Assessment of the potential impacts on the aquatic habitats (and aquatic biota, if any) along the pipeline route and receiving tributaries associated with the proposals for the Butterworth Drought Relief Project. Aspects of importance included:

a) The present ecological status (PES) and presence of ecologically important and sensitive habitats associated with the two watercourses or small streams along the pipeline route, namely Stream Crossing A and Stream Crossing B (Mjula Stream), as well as the receiving tributary and upper Xilinka River, as shown in Figure 1 above;

b) The potential impact of the pipeline crossings on the two watercourses and the impact on the receiving watercourses of water released from the pipeline.

2. Production of a report giving the result of the above investigations, including recommendations regarding reasonable mitigation measures to eliminate or reduce any identified impacts to acceptable levels during both the construction and operational phases.

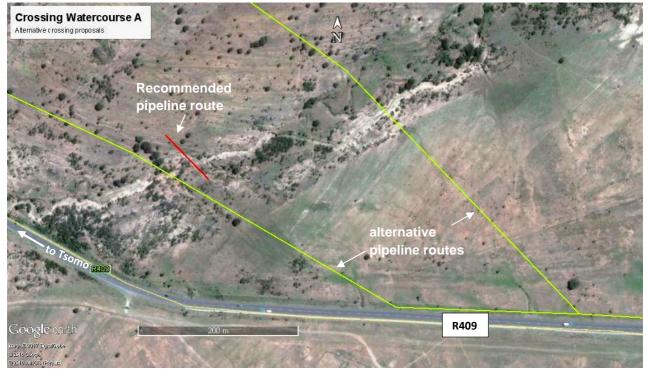
1.3 Methods

The following methods were employed during this study:

- Available data from previous studies on the present ecological status and the ecological importance and sensitivity of the aquatic environments potentially impacted, were reviewed.
- A field visit was undertaken on 9th May 2017 to inspect the instream and riparian zones and assess the present ecological status and sensitivity of the affected watercourses impacted by the proposed construction activities and water releases.
- The findings were incorporated into a report which included an assessment of potential impacts and recommended mitigation measures.

1.4 Assumptions and Limitations

The scope of work was limited to a desktop review of available information and to a single walk-over inspection of the study area, in particular the aquatic habitats potentially impacted. During the site visit a visual assessment of riparian and instream habitats was carried out which was supplemented by studying Google Earth images of the sites. The field inspection was undertaken during a relatively dry period, when there was no streamflow or very little flow in the affected watercourses.


1.5 Details of Author

Dr Anton Bok (PhD Ichthyology, Rhodes University) has over 35 years of experience in the field of conservation, research and management of rivers in southern and central Africa, with emphasis on fish fauna. Dr Bok worked for Cape Nature Conservation as an aquatic scientist involved in fish research and conservation of aquatic biota and habitats for over 20 years. In 1997 he formed the environmental consultancy *Anton Bok Aquatic Consultants cc,* specializing in environmental impact assessments (EIAs) of developments, mainly those associated with aquatic ecosystems and specifically freshwater fish. Projects undertaken in this field include baseline fish biodiversity surveys for EIAs and studies involving ecological "Reserve" determinations in various rivers in SA, with specialist input on the requirements of fish fauna. Dr Bok has undertaken specialist freshwater fish studies as part of EIA investigations throughout South Africa, the Democratic Republic of the Congo, Zambia, Madagascar, Mozambique and Lesotho. He is a registered professional natural scientist (Pr. Sci. Nat.) in the field of Aquatic Science (Reg. No. 400406/11) and an honorary research associate of the South African Institute for Aquatic Biodiversity, Rhodes University in Grahamstown.

2. DESCRIPTION OF NATURAL ENVIRONMENT AT THE PROJECT SITES

2.1 Description of Sites

2.1.1 Water course A Crossing

Figure 2. Google Earth overlay of proposed pipeline crossing locations over Watercourse A. The red line marks the preferred crossing site (pers. comm. Dr B van der Waal).

Plate 1. Proposed pipeline route (dotted white line) at preferred crossing location of Watercourse A, as seen from the right bank of the watercourse (dry donga).

As can be seen in Figure 1 and Plate 1, Watercourse A is a highly disturbed ephemeral stream consisting of badly eroded channels with banks from 1m to 3.5m high. The main existing impacts are associated with serious overgrazing and trampling by domestic stock (goats and cattle) and removal of riparian vegetation.

2.1.2 Watercourse B Crossing (Mjula Stream)

Figure 3. Google Earth image of pipeline crossing of Watercours B (Mjula Stream) parallel to the R409.

Plate 2. Pipeline crossing of Watercourse B (Mjula Stream) next to (west of) the R409.

As can be seen in Figure 3 and Plate 2, Watercourse B (Mjula Stream) is highly degraded with virtually all riparian vegetation removed by both local villagers and grazed by domestic stock. The pipeline crossing parallel to the R409 is at an old flood-damaged low-level causeway, with broken sections of the old causeway pipes lying in the channel.

2.1.3 Release Tributaries

Figure 4. Upper Xillinka River showing proposed (yellow lines) and recommended (white line) water release points, as well as a road crossing about 5 km downstream (by river) of the release point, upstream of the large wetland. Note black wattle invading the watercourse.

Plate 3. Recommended release location in an eroded gulley below an existing earth dam.

Plate 4. Eroded donga downstream of earth dam at proposed release point.

Plate 5. Eroded dam wall upstream of proposed water release point, looking upstream.

Plate 6. Problematic road crossing some 5 km downstream of release point (looking upstream).

As seen in Figure 3 and Plates 3 to 5, the recommended release point is into an eroded gully about 10m downstream of an existing earth stock-watering dam. As pointed out by Dr B. van der Waal (pers. comm. 9 May 2017), this gulley has already eroded down to bedrock and is considered wide enough to carry the released water without significant bank erosion.

It should be noted that there is a problematic road crossing some 5 km downstream of the proposed release point which according to local villagers, is often impassable after rains. The proposed water releases could exacerbate this problem.

The receiving tributary flows into a large (approximately 250m x 800m) wetland some 5.5km downstream of the release point. As there is no defined stream channel in this wetland, it should act as a sediment sink. Any eroded sediment from upstream should be deposited in this area and not reach the Xilinka Dam itself.

2.2 Existing Spatial Biodiversity and Conservation Planning Data

Information from previous studies of the biodiversity and ecological status of aquatic habitats and biota in the affected sections of the study area was obtained from published scientific literature. In addition, biodiversity and ecological data were obtained from a number of systematic spatial conservation planning studies that have recently been undertaken on rivers in South Africa, including this area, as discussed below.

2.2.1 National Freshwater Ecosystems Priority Areas project (Driver et al. 2011).

The National Freshwater Ecosystems Priority Areas (NFEPA) project (Driver *et al.* 2011) identified important freshwater areas in South Africa that require management actions in order to conserve these ecosystems and ensure sustainable use of water resources. These strategic spatial priorities are termed Freshwater Ecosystem Priority Areas or FEPAs. The NFEPA project produced FEPA maps which show different categories with different management implications for freshwater systems. The FEPA map for the study area is given below in Figure 5.

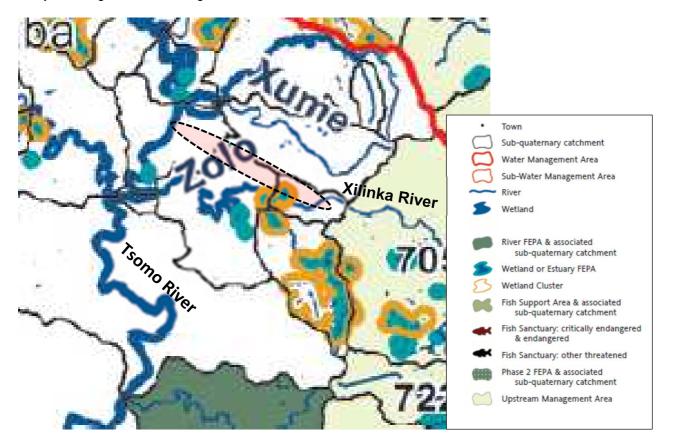


Figure 5. The NFEPA map covering the study area (light red oval) (from Driver et al. 2011).

As indicated in Figure 5, the impacted watercourses in the study area are located in the upper Zolo River and Xilinka River catchments which are not considered to fall within a priority area in terms of conservation of the biodiversity of freshwater ecosystems. These areas do not even fall within an Upstream Management Area and are thus considered to have limited conservation value in terms of conserving aquatic biodiversity or ecological functioning of downstream aquatic ecosystems.

2.2.2. Present Ecological Status (PES), Ecological Importance (EI) and Ecological Sensitivity (ES) of South African Rivers (DWS 2014).

The project undertaken by the Department of Water and Sanitation (DWS 2014) to review the DWAF 1999 database on the present ecological status (PES), ecological importance (EI) and ecological sensitivity (ES) data) for South African rivers, took into account all existing biophysical information available on the river reaches within the various sub-quaternary catchments in the country.

The section of pipeline from the Tsomo River to the ridge forming the catchment divide with the Xilinka River, crosses two watercourses, namely an unnamed tributary of the Zolo River (Crossing A) and the Mjula River tributary of the Zolo River (Crossing B). The proposed water release point is located in the upper Xilinka River catchment. The PES, EI and ES values given for these river reaches, taken from the above study (DWS 2014), are given in Table 1 below.

Table 1. The PES, EI and ES of the river reaches within the sub-quaternary catchments in which the proposed infrastructure and potential impacts associated with the Butterworth Drought Relief Project are located (taken from DWS (2014).

SITE	SUB-QUATERNARY (NFEPA CODE)	PES	EI	ES
Crossing A (tributary of Zolo R.) along pipeline from Tsomo River to ridge forming. catchment divide	S50J (7068))	С	Moderate	Moderate
Crossing B (Mjula River) along pipeline from Tsomo River to ridge forming. catchment divide	S50J (7104)	С	Moderate	Moderate
Upper Xilinka River downstream of water release point	S70C (7065)	D	Moderate	Moderate

As shown in Table 1, the **PES** designation for both sub-quaternary catchments for the two watercourse pipeline crossings (S50J - 7068 and S59J - 7104), was given as a **C-category** (DWS 2014). The definition of a C Category is given as: *"Moderately modified. A loss and change of natural habitat and biota have occurred but the basic ecosystem functions are still predominantly unchanged"*, after Kleynhans (1996).

However, observations during the field inspection on the 9th May 2017 indicated that the two watercourses involved have in recent years been seriously transformed and degraded by man-induced impacts. These impacts include serious destruction of the riparian habitat due to cattle trampling and overgrazing, removal of indigenous riparian vegetation by local villagers, as well as significant catchment erosion due to overgrazing and poor agricultural practices.

The pipeline crossing point at the Mjula River has been further degraded by the construction of the R409 road bridge, as well as by residual impacts from an old flood-damaged low-level causeway at the crossing site (see Plate 2). These impacts have destabilised the stream banks, resulting in bank-slumping and massive erosion. The **PES** values of the two watercourses crossed by the pipeline are thus considered to be in a **D-category**, defined as "being largely modified, where a large loss of natural habitat, biota and ecosystem functions have occurred", after Kleynhans (1996).

The recommended receiving watercourse in the Xilinka River catchment consists of a badly eroded gulley or donga originating below a small earth dam (see Plates 3, 4 & 5). Downstream the river channel and riparian zone has been invaded by alien black wattle, further destabilising the banks. Observations during the site investigation of the upper Xilinka River tributaries on 9 May 2017 concur with the previously-mentioned DWS (2014) study that found the receiving watercourse to be largely modified and degraded, and thus to be in a **D** present ecological state (**PES**), as indicated in Table 1 above.

2.3 Aquatic Biota

The absence of permanent surface water in the watercourses at the pipeline crossing points, as well as the serious degradation clearly evident, means that these habitats are unable to support any valuable aquatic life dependent of permanent surface water. In terms of aquatic conservation, these two watercourses are considered to have limited value in terms of supporting aquatic biodiversity.

A visual inspection of the clear shallow pools and runs in the receiving tributary in the upper Xilinka River some 5 to 7 km downstream of the water release point, showed these habitats support common aquatic life such as crabs and tadpoles, but no fish were seen. Any elevated flow in the upper Xilinka River tributary should be of benefit to the large wetland located some 5.5 km downstream and should stimulate growth of existing wetland vegetation presently impacted by overgrazing and periodic dry spells.

It important to note that as both the Tsomo River and Xilinka River are tributaries of the Great Kei River, this project is not considered an inter-basin transfer. In the highly unlikely event of any fish surviving being pumped up into the upper Xilinka River catchment, fish alien to this river system would not be translocated.

3 ASSESSMENT OF POTENTIAL IMPACTS

3.1 Overview

The main potential environmental impacts presented by the proposed Butterworth drought relief projects considered in this study appear to be associated with the following:

- 1. Elevated erosion and sediment mobilization due to destabilization of the banks of the watercourses crossed by the pipeline and elevated erosion of the channel in the release tributary.
- 2. Possible changes in quality water (chemical pollution) in the two watercourses crossed by the pipeline associated with the proposed construction activities.

3.2 Assessment of Potential Impacts and Proposed Mitigation

3.2.1 Increased Sedimentation and Elevated Turbidity

Cause and Comment

Disturbance of the stream banks and riparian vegetation during the construction of the pipeline at the two watercourse crossings, as well as elevated flow in the release tributary in the upper Xilinka River, could result in increased erosion and sediment input into the watercourses. Elevated sediment input and raised turbidity levels in the river could have serious negative impacts on aquatic habitats and biota downstream. Reduced water quality due to increased sediment input, together with water pollution due to a variety of factors, is considered one of the biggest threats facing rivers and associated aquatic biota in southern Africa (Skelton 2001).

The negative impacts of elevated turbidity on fish and other aquatic biota, include:

- The whole food web can be disrupted due to reduced light penetration and photosynthesis, resulting in reduced primary production and a reduction in submerged plant life, including phytoplankton.
- Reduced number of benthic organisms (e.g. benthic algae, crabs, small aquatic invertebrates) due to altered substrate composition and smothering.
- Clogging, abrading and damage to fish gills, leading to reduced oxygen absorption, damage to gill filaments, resulting in increased stress, disease and even death.
- o Smothering of newly fertilized fish eggs and larval fish.
- Reduced feeding efficiency and slower growth rates, even starvation of fish this can have a major impact on visual predators as they are unable to see and find enough food in the turbid water and filter feeders are unable to cope with a high proportion of non-food items.
- Deep pools could be filled with sediment, reducing their ability to provide refuge habitat for fish (and other aquatic life) during low flow periods.

Preconstruction

Clearing of top-soil and vegetation cover in preparation for construction of infrastructure near the watercourses, particularly in the riparian zone, could increase soil erosion and sediment input into the adjacent stream channel.

Construction

Run-off from newly-cleared areas and earth-moving activities near the watercourses during construction may increase soil erosion and sediment levels present in stormwater run-off to the adjacent channel, elevating the turbidity, particularly during heavy rains.

Operation

- Elevated flows due to the release of between 130 l/s to 300 l/sec in the receiving tributary, could cause bank erosion and slumping, resulting in elevated sediment input and also turbidity within the watercourse.
- Unless all disturbed areas on the banks and riparian zones of various watercourses are adequately stabilized with vegetation and/or well-designed erosion-protection works which are adequately maintained, flood damage and bank erosion and slumping could occur during heavy rains and/or at high stream flows, resulting in elevated sediment input into the adjacent watercourse.
- Unless the pipeline is buried below the natural ground level at the watercourse crossings and placed in bedrock or protected by appropriate gabion structures, the altered flow patterns during high flows could erode the stream banks.

Significance Statement

Both watercourses to be crossed by the proposed pipeline already have moderately to largely modified present ecological status (**PES of a C and D Category**) due to existing man-induced impacts. The significance of the possible impact of elevated erosion and turbidity due to this project is thus considered to be **moderate**. With appropriate mitigation this should be reduced to a **low** or insignificant impact.

The tributary or gulley recommended to receive the released water (see Figure 4 and Plates 3, 4 & 5) already has a largely modified PES and is eroded down to bedrock in most areas. As this eroded gulley already has a relatively wide channel, the elevated flow should not cause further significant erosion. In addition, any sediment produced should be trapped by the large wetland about 5.5 km downstream.

		Effect	Risk or			
Impact	Temporal Scale	Spatial Scale	Severity of Impact	Likelihood	Significance	
Preconstruct	tion and Constr	uction Phase				
Without Mitigation	Short term	Study Area	Moderate	May occur	Moderate	
With Mitigation	Short term	Study Area	Slight	Unlikely	Low	
Operational	Phase					
Without Mitigation	Medium term	Study Area	Moderate	May occur	Moderate	
With Mitigation	Medium term	Study Area	Slight	Unlikely	Low	

Mitigation

- To prevent scouring and erosion at the river crossings during heavy rains via surface run-off as well
 as during high river flows, appropriate (best practice) gabion protection works and rehabilitation of
 all disturbed areas on the river banks and riparian zone with appropriate indigenous vegetation will
 be necessary.
- The pipeline should be buried below the natural ground level at the watercourse crossings and placed in bedrock (if present) and/or protected by appropriate gabion structures or cement casing.
- The recommended pipeline crossing point over Watercourse A shown in Figure 2 and Plate1 (at S 32^o 03' 12.4", E 27^o 51' 44.34") is at a point where the stream is confined to single channel with a sandstone floor. A pipeline crossing at this site will reduce the risk of future erosion problems.
- Water should be released continually, rather than in short bursts, to prevent the collapse of saturated banks resulting in elevated erosion.

• Details of mitigation measures to prevent destabilization of the river bank and damage to the riparian zones, as well rehabilitation measures using indigenous riparian vegetation, should be set out in the construction environmental management plan (CEMP).

3.2.2 Water Quality: Chemical Pollutants

Cause and comment

Careless and inappropriate construction activities and problematic equipment and machinery (e.g. oil leaks) could result in pollutants such as hydrocarbons, uncured cement, shuttering oils, etc., entering the watercourse during the construction phase. These toxic chemicals associated with the construction activities and machinery used during construction can be very harmful to aquatic biota. During rainfall events or after accidental spillages, these chemical could be washed into the adjacent watercourse and then downstream, posing a risk to downstream aquatic biota, as well as domestic stock and villagers using the water for drinking purposes.

Preconstruction & Construction

- Chemical pollutants (hydrocarbons, drilling and cleaning fluids) associated with site-clearing and earth-moving machinery could wash into the watercourse.
- Hazardous materials & chemical pollutants stored on site and used in construction could accidently spill or be washed into the watercourse channel.
- Uncured concrete and dry cement powder could contaminate the watercourse e.g. due to heavy rains during construction. It is important to note that uncured cement is highly alkaline and could significantly raise the pH of any water in contact with it to levels lethal to aquatic life.

Operation

The above impacts are associated with the construction phase and pollution risks should be minimal during operation provided appropriate maintenance and repairs are carried out with due diligence.

Mitigation

- Strict use and management of all hazardous materials used on site.
- Strict management of potential sources of pollution (hydrocarbons from vehicles & machinery, cement during construction, etc.).
- Containment of all contaminated water before it can enter the adjacent watercourse.

Significance Statement

During construction there will be a short-term risk of chemical pollution, which could potentially result in impacts of **moderate** significance in the adjacent watercourse and downstream. However, with appropriate mitigation this potential impact could readily be reduced to **low** significance.

		Effect	Risk or				
Impact	Temporal	Spatial Scale	Severity of	Likelihood	Significance		
	Scale	Spallal Scale	Impact	Likeimood			
Construction Phase							
Without Mitigation	Short term	Study Area	Moderate	May occur	Moderate		
With Mitigation	Short term	Study Area	Slight	Unlikely	Low		

3.2.3 Monitoring Requirements

All newly-built structures at the two watercourse crossings and the channel of the water release tributary, as well as all riparian areas disturbed during construction, should be regularly inspected for flood damage and any necessary erosion protection and required repairs undertaken without delay.

3.3. Concluding Statement

The potential impacts associated with the proposed Butterworth drought relief project are considered to be of low to moderate significance without any mitigation. However, all **potential impacts** should readily be reduced to **low significance** provided the construction work is carried out with due diligence and appropriate mitigation measures, as recommended in this report, are carried out.

The proposed activity should thus not affect the current functioning or reduce the present ecological state (PES) of the downstream aquatic habitats and biota in the affected reaches of the watercourses impacted. The project is therefore considered to present a **low risk** to the ecological integrity of the affected aquatic habitats. It is therefore recommended that the proposed project should be authorised subject to the mitigation measures set out this report.

4. **REFERENCES**

Department of Water and Sanitation (DWS) (2014). A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Secondary: N1. Compiled by RQIS-RDM: <u>https://www.dwa.gov.za/iwqs/rhp/eco/peseismodel.aspx (accessed on 8</u> April 2016).

Driver, A., Nel, J.L., Snaddon, K., Murray, K., Roux, D.J., Hill, L., Swartz, E.R., Manual, J. & Funke, N. 2011. *Implementation Manual for Freshwater Ecosystem Priority Areas*. WRC Report No. 1801/1/11.

Kleynhans, C.J. (1996). A Qualitative Procedure for the Assessment of the Habitat Integrity Status of the Luvuvhu River (Limpopo system, South Africa). J. Aquat. Ecosystem Health. 5: 1-14.

Skelton, P. H. 2001. A complete guide to the freshwater fishes of southern Africa. Struik Publishers, Cape Town, South Africa. 388 pp.

PART C4.4: GEOMORPHOLOGICAL INVESTIGATION

The instream impact and erosion mitigation of flow release down tributaries feeding Xilinxa Dam, Butterworth, Eastern Cape Province.

Geomorphic consequences and preventative options

May 2017

Prepared by Dr BW van der Waal 7 Landsdowne Road Grahamstown 6140 084 740 7671 bvdwaal@gmail.com

Prepared for: Brendon Steytler Indwe Environmental Consulting CC 12 Preston Avenue Vincent East London 5247 Tel: 043 726 6860 Fax: 086 513 9734 Email: <u>brendon@indwecon.co.za</u> www.indwecon.co.za

Contents

Glos	ssary	·	2			
1.	Intr	oduction	4			
2.	Met	thods	4			
3.	Present channel condition5					
4.	. Likely geomorphic effects of additional flow on channels and depositional areas					
5.	Recommendations					
5	.1.	Release options	10			
5	.2.	Stabilisation of soils and headcuts	12			
5	.3.	Monitoring	13			
5	.4.	Notes on river crossings	14			
6.	Con	nclusions	15			
7.	. References					

List of figures

Figure 1: Images of the Toboyi River incised to bedrock along its upper (left) and middle reaches (right)
Figure 2: State of the drainage pathway of water released into the Toboyi and Xilinxa Rivers. Flow direction indicated by a white arrow
Figure 3: Image of a floodout or sediment deposition area (circled in black) in the upper Toboyi River catchment
Figure 4: Image of an active headcut in the upper Toboyi River catchment. Note the slumping of grassed topsoil where erosion is taking place
Figure 5: The location of active headcuts along the upper Toboyi River. Flow direction indicated by white arrow
Figure 6: A conceptual diagram by Lane (1955) showing likely channel response due to changes to discharge
Figure 7: Pipe outlets and headcut stabilisation options. Flow direction indicated by a white arrow.11 Figure 8: Images of a) the headcut (at i in Figure 7), b) the headcut (at ii n Figure 7), c) the headcut
at dam spillway (at iii in Figure 7) and d) headcut upstream of the dam12 Figure 9: Examples of headcut control structures: a) weir, b) gabion, c) and d) chute (photos by Japie
Buckle)13Figure 10: Proposed drainage line crossings of the pipeline (orange line) along the R409 (Google
Earth image). The yellow line indicates the best geomorphic location for crossing the stream 14 Figure 11 K: Image of the main drift crossing the Toboyi River

List of tables

Glossary

Channel – the outline of a flow pathway where water is concentrated.

Floodout – flat sediment depositional area downstream of a defined channel where water is spread out across the surface.

Flow path – route that runoff will take due to gravity and local topography.

Incision – downward erosion along a drainage line or river resulting in the drainage line floor or river bed being much deeper than the surrounding landscape.

Wetland – area where soils are permanently or periodically inundated or saturated by water.

Specialist statement

This statement has been prepared with the requirements of the Environmental Impact Assessment Regulations and the National Environmental Management Act (107 of 1998), any subsequent amendments and any relevant other National and/or Provincial Policies related to ecological or biodiversity assessments in mind, such as the National Environmental Management: Biodiversity Act (10 of 2004) and National Water Act (36 of 1998).

Prepared by:

Dr BW van der Waal

Qualifications: BSc. (Botany and Geography), BSc. Hons. Geography (Environmental Water Management), MSc Geography (Biogeography) and PhD Geography (Geomorphology), Tools for Wetland Assessment short course.

6 years of experience doing specialist geomorphological assessments.

Signature

Date: June 2017

Reviewed by:

Prof KM Rowntree

Qualifications: BSc Hons (Geography), MSc Geography (wetland hydrology), PhD Civil Engineering (sediment modelling).

20 years of experience as geomorphology specialist on river condition studies and environmental flow assessments.

K M Roundree

Signature

Date: June 2017

1. Introduction

The water supply to the town of Butterworth is severely limited with the Xilinxa Dam, one of the main storage facilities for the town, currently at 2%. The proposed solution is to pump water from the Tsomo River over the catchment divide and release water at a single point down a headwater drainage line flowing into the Toboyi River to enter the Xilinxa Dam. A new pipeline and 7ML command reservoir will be part of the infrastructure needed for the water transfer. It is proposed that 15ML/day with peak flow rate of 270L/s will be released into the Toboyi River (Aurecon, 2017). It is envisaged that the release will take place for 16 hours a day due to the large pump capacity (Aurecon, 2017). Aurecon has proposed two possible pipe outlet options for discharging water into the Toboyi River system. The pipe outlet option with the least environmental threat should be used.

The increased discharge down the Toboyi River system is likely to cause some degradation along the release flow path. Geomorphological specialist inputs regarding the impacts of the targeted tributary were requested to recommend best option for flow release that will minimise receiving stream impacts.

The specialist has been approached to provide the following:

- Desktop assessment and selection of the preferred receiving tributaries in terms of minimal geomorphological disturbance
- Identification of areas sensitive to increased/continuous flow
- Field assessment of the selected receiving tributaries and sensitive areas
- Report on likely impacts, preferred tributary options, recommendations as to receiving stream preparation, stream and streambank erosion mitigation and monitoring.

2. Methods

The study was based on desktop and field methods.

The desktop assessment included aerial and satellite image interrogation along possible flow pathways provided by Aurecon (2017). The planned pipeline route (with two release point options) was loaded onto Google Earth and ArcMap GIS software and was used for further mapping of the receiving channels. High resolution (0.5m) colour aerial orthophotos from 2009 were used in ArcMap to digitize geomorphic features. More recent (2017) satellite images were used in Google Earth to verify the current extent of the digitized features.

Characteristics of the various proposed flow-release pathways, such as channels incised to bedrock, channels incised into alluvium and unchanneled sediment floodouts or wetlands (sediment and water buffers) were mapped. Stream crossings were noted and all headcuts in floodouts were digitized. These spatial data were loaded onto a GPS enabled tablet for verification in the field.

General soil erodibility data were sourced from the South African Atlas of Climatology and Agrohydrology by Schulze (2007).

The field assessment was done during autumn low-flow conditions on the 9th of May 2017. Low-flow conditions are important for assessing drainage line floor stability as there is very little water in the channel. The upper reaches of the likely drainage paths from the proposed pipe outlets (Aurecon, 2017) were visually assessed on foot in order to determine the level of incision, drainage line floor material, width of drainage channel, bank material, floodout sediment composition and signs of headcut activity. The desktop mapping was verified in the field and geotagged, ground-based photos were taken of features along the drainage lines. Changes to channel shape and type were recorded

on the tablet. The lower sections of the Toboyi and Xilinxa Rivers were assessed where vehicle access allowed.

3. Present channel condition

The Toboyi River drains to the east and is a tributary of the Xilinxa River and the larger Kei River basin. These rivers are indicated on the 1:50 000 topographical maps as perennial rivers. The Toboyi and Xilinxa Rivers are extensively incised into the landscape from the headwaters to the inlet at the Xilinxa Dam (Figure 1 and 2). The upper 500m of the Toboyi River is underlain by resistant dolerite, whereas the rest of the Toboyi and Xilinxa Rivers are underlain by erodible mudstones. Soil erodibility is moderate on the dolerite and high on the mudstones, especially where dispersive duplex soils are present (Schulze, 2007). Stream banks and gully sidewalls are mostly fine grained mudstone subsoils that are possibly dispersive due to high sodium concentration associated with mudstones (Hardie, 2009; Beckedahl and De Villiers, 2000). The incision has cut down to bedrock along most of the river course, with short sections where deposition occurs in the form of floodouts or unchanneled valley bottom wetlands (Figure 2). Fine sand, silt and clay is deposited on these floodouts. These floodouts are unchanneled and act as an important buffer for water and sediment in the landscape (Figure 3). Upstream of the floodouts the incised channel has partly filled with sediment and is indicated as 'incised in alluvium' in Figure 2. These floodouts or depositional zones are the most sensitive to degradation or incision through gullying. Headcuts are present within the depositional zones, cutting a channel or gully into the deposited sediment (Figure 4 and 5). These headcuts are active and will advance during times when water is falling into the base of the headcut, eroding the supporting subsurface layer, leading to the collapse of the upper more stable layer. This upstream headcut propagation is a natural cut-and-fill process that reworks and redistributes sediment (Temme et al., 2008). This process can be accelerated by changes to flow, especially increased flow associated with the proposed activity.

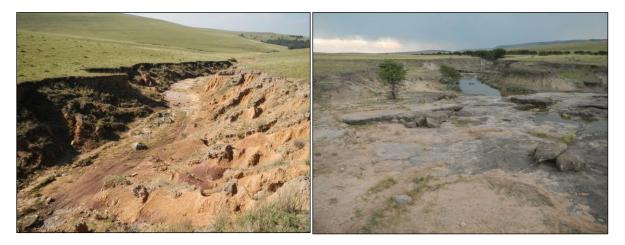
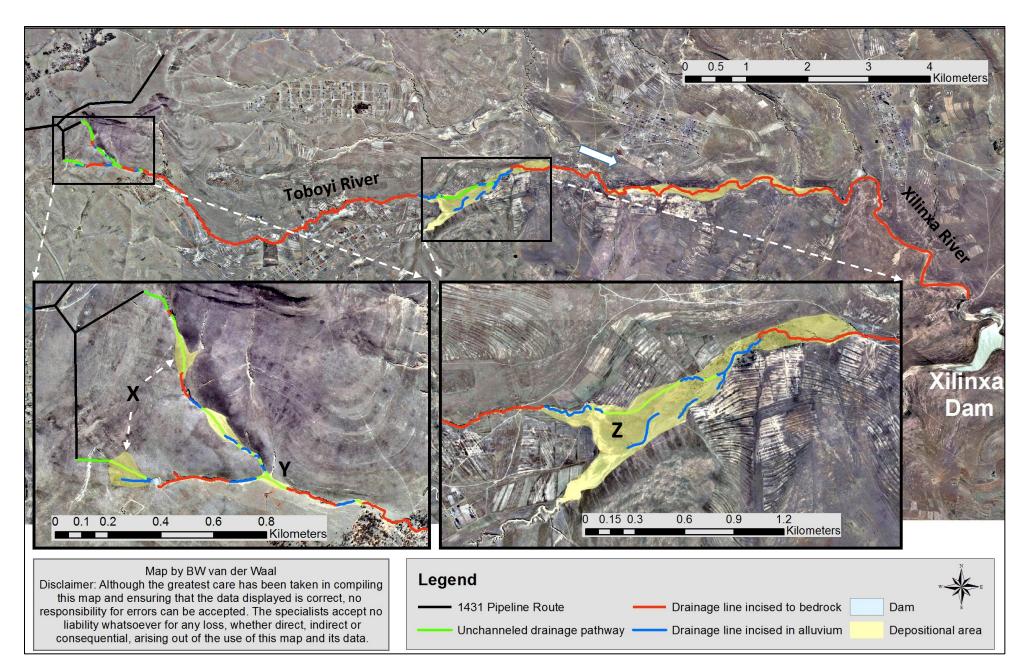



Figure 1: Images of the Toboyi River incised to bedrock along its upper (left) and middle reaches (right).

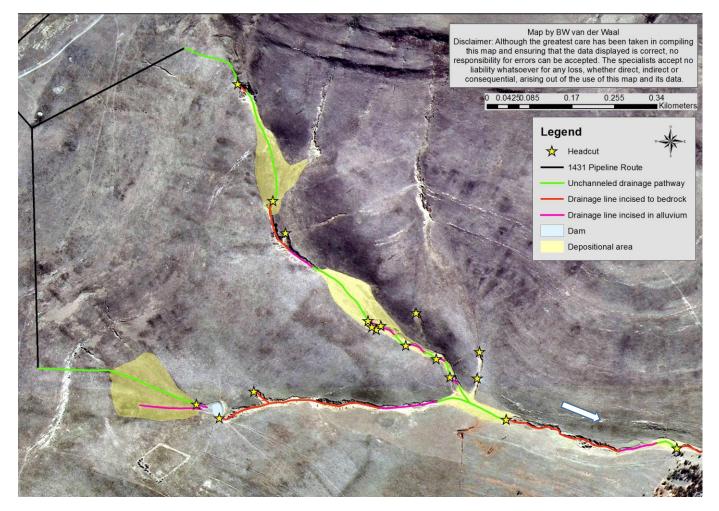

Figure 2: State of the drainage pathway of water released into the Toboyi and Xilinxa Rivers. Flow direction indicated by a white arrow.

Figure 3: Image of a floodout or sediment deposition area (circled in black) in the upper Toboyi River catchment.

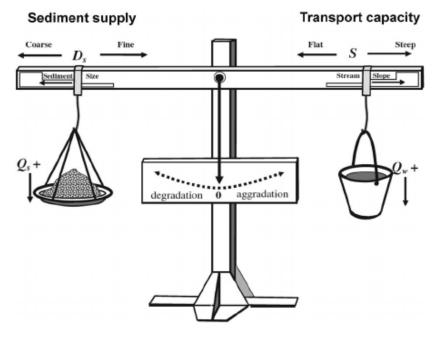

Figure 4: Image of an active headcut in the upper Toboyi River catchment. Note the slumping of grassed topsoil where erosion is taking place.

Figure 5: The location of active headcuts along the upper Toboyi River. Flow direction indicated by a white arrow.

4. Likely geomorphic effects of additional flow on channels and depositional areas

The general expected outcome of the addition of water to a drainage line is incision or channel degradation due to increased energy to erode and transport sediment. This is clearly indicated by Lane's balance in Figure 6 where transport capacity will be increased, tipping Lane's balance towards 'degradation'.

Figure 6: A conceptual diagram by Lane (1955) showing likely channel response due to changes to discharge.

Cases of channel degradation due to increased discharge have been recorded in the literature. Severe channel incision has been described by Du Plessis (2000) where an Inter-basin Transfer (IBT) transferring Orange River Water (Orange-Fish-Sundays River Inter-basin Transfer Scheme) into a first order (small) stream (Skoenmakers River). The hydrology was changed to the extent that the IBT release was much greater than natural flood flows of the Skoenmakers River. This caused severe erosion and channel incision along the upper reaches of the receiving stream. Beckedahl and De Villiers (2000) described severe erosion associated with road culverts concentrating runoff on mudstones in the former Transkei area.

In the case of the Tsomo-Toboyi River transfer, the peak release volume of 0.27m³.s⁻¹ is much less than flood volumes with a two year recurrence interval (Table 1). Peak discharge for an event with a two year recurrence interval was calculated for three of the wetlands (ranging from the smallest wetland catchment to largest wetland along the Toboyi River) to determine the ratio of ITB release to natural peak discharge prediction for the Toboyi River. The cases were:

- the uppermost sediment depositional areas (X in Figure 2; catchment size of ~15 ha)
- the sediment deposition area at the confluence of the two highest tributaries (Y in Figure 2; catchment size of ~100 ha)
- the larger sediment depositional area 7km along the Toboyi River (Z in Figure 2; catchment size of ~1300 ha).

The Rational Method as described by SANRAL (2007) was used to calculate peak discharge. A rainfall event of 45mm with a 2 year return period was used as this is a likely size of event that the flow pathway is adjusted to along the alluvial sections (Wolman and Miller, 1960). It was calculated that the upper most sediment deposition zone's (marked X in Figure 2) peak flows will be increased by 27%, whereas only by 4.2% at the confluence of the two minor drainage lines (marked Y in Figure 2; Table 1). At the downstream sediment depositional area (marked Z in Figure 2) the increase in discharge will be negligible at 0.3%. It is likely that the increase in peak discharge will have some effect on the upper sediment depositional areas as peak discharge is increased by more than a quarter, but no significant effect lower down.

The other consideration is the duration of the release. Although the increase in peak discharge is relatively small, the flow will be more continuous under the proposed release conditions than under present day conditions. This will allow the floodouts to become saturated and erosional processes, such as undercutting, slumping and bank collapse, to

occur at the headcuts. This could result in slow, but continuous erosion at headcuts, causing extensive erosion over time. It is likely that the headcuts at X and Y in Figure 2 will advance at an increased but steady rate as a result of the addition of continuous flow. Due to the catchment size of the lower sediment depositional area at Z in Figure 2, the effects of erosion due to the release are expected to be negligible.

Drainage area (ha)	Peak discharge for	Peak release (m ³ .s ⁻¹)	Ratio of release: 2year
	event with 2 year	(Aurecon 2017)	event as %
	recurrence interval		
	(m ³ .s ⁻¹)		
15	1	0.27	27
100	6.5	0.27	4.2
1300	88	0.27	0.3

Table 1: Peak discharge calculations for various sediment deposition zones along the Toboyi River.

As most of the Toboyi and Xilinxa Rivers are incised to bedrock and widened to accommodate flood flows larger than $0.27 \text{ m}^3.\text{s}^{-1}$, these sections will remain stable given the relatively small release flow. These channels have widened to such an extent that the incised channel floor is between 1.5 and 8m wide. Along the narrower sections erosion will occur along the banks, but this will be limited to short sections (20 - 50m) in length where stream banks are likely to steepen as a result of channel widening. This sediment production will slow as soon as the channel has adjusted to the release volume of $0.27 \text{ m}^3.\text{s}^{-1}$.

The depositional areas are threatened by headward erosion. Several headcuts are present in the vicinity of the sediment depositional areas and as they are active, are likely to advance further upstream during flow releases (Figure 5). The headcuts can be stabilised to reduce the undercutting of the base materials and associated bank collapse and slumping.

The majotity of eroded sediment will be deposited in floodout areas downstream along the Toboyi River. Due to the extensive size of the floodout at Z in Figure 2, it will act as a sink for sediment eroded from upstream channels and sediment depositional areas, thus a minimal volume of sediment will make it to the Xilinxa Dam (provided the sediment sink at Z remains stable). Ongoing deposition of sediment in the floodout Z in Figure 2 will lead to the steepening of the floodout slope and eventually lead to erosion thereof.

5. Recommendations

Below are recommendations regarding the release points, methods to stabilise the incision of headcuts and methods of monitoring erosion along the drainage line. Notes are included on areas where the proposed pipeline crosses streams and where vehicles cross the Toboyi River.

5.1. Release options

Pipe outlets A and B and an additional pipe ending at C are shown in Figure 7. Pipe ending C will minimize the likely erosion along the sediment depositional features and is thus the recommended option. Pipe outlet A will have the highest risk of accelerated channel degradation as there are nine headcuts along the drainage path eating into the ~700m of unchanneled sediment deposit or soil (Table 2). Protecting all nine headcuts will be costly. The first 100m below the pipe outlet is steep grassed hillslope (30% slope) and will be susceptible to erosion due to its gradient. Livestock are likely to trample these wet areas along the flow path, further increasing the risk of soil erosion.

Pipe outlet B is likely to be of lower sediment erosion risk compared to A, as the channel network has four active headcuts and can possibly erode 450m of unchanneled drainage pathway (Table 2; Figure 8). One of these headcuts is approaching a small-dam spillway and might cause community upset if this feature is lost (important drinking point

for livestock)(Figure 8). The first 100m below the pipe outlet is steep grassed hillslope (30% slope) and will be susceptible to erosion due to its gradient. Livestock are likely to trample these wet areas along the flow path, further increasing the risk of soil erosion.

Pipe outlet C would pose the lowest threat to erosion of steep grassed hillslopes and unchanneled sections of the drainage pathway as this site has two headcuts along 166m of unchanneled sediment deposit (Table 2; Figure 8).

The additional water will possibly increase vegetation growth along the release pathway, mitigating any erosion risk. Due to the location of the site in communal grazing land the increased vegetation growth will attract livestock. This will result in trampling of vegetation and destabilising of surface soils. This can initiate and promote soil erosion and thus should be avoided. Fencing is an effective option for managing livestock access to these sensitive areas.

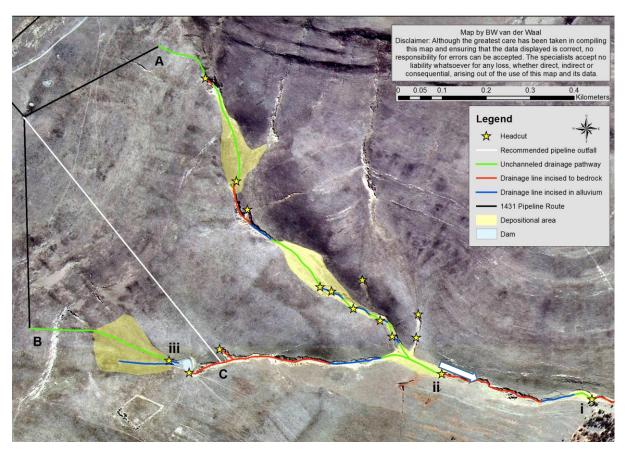


Figure 7: Pipe outlets and headcut stabilisation options. Flow direction indicated by a white arrow.

Table 2: Pipe outlet options g	aiving number of active h	pondente lonath o	f unincicad flow nath
I U D I E Z. F I D E U U L I E L U D L I U I S L	<i>uiviiiu iiuiiibei oj uclive ii</i>	ieuucuis, ieiigiii o	
1 1 2	5 5 7	, , ,	, , ,

Pipeline ending	Number of existing	Length of	Length of channel
	headcuts	unchanneled section	incised into alluvium
		(m)	(m)
А	9	702	249
В	4 (one at dam outlet)	451	169
С	2	166	169

Figure 8: Images of a) the headcut (at *i* in Figure 7), b) the headcut (at *ii* in Figure 7), c) the headcut at dam spillway (at *iii* in Figure 7) and d) headcut upstream of the dam.

5.2. Stabilisation of soils and headcuts

It is recommended that the headcuts along the chosen route are stabilised to prevent further degradation of the sediment depositional areas associated with more permanent flow from the release point. Various options are available to stabilise headcuts:

- construct a weir or gabion to lift the channel height and effectively drown-out the headcut
- construct a chute so water enters the lowest portion of the channel without further erosion of the base sediment
- similar to a chute, a pipe can be installed to concentrate the water in the pipe upstream of the nick point and release it in the lowest part of the incised channel (Figure 9; see Russell et al. (2009) for details on design).

Gabions are not preferred as they are easily vandalised, are prone to rust, need frequent maintenance and are often undermined by tunnel erosion (Pers. Comm. J. Buckle). All of these options are high risk as the soils are relatively unstable and likely to be dispersive along the Toboyi River, thus easily undermined by tunnel erosion. To reduce the risk of structure failure, the structures should be well keyed into the banks and frequently monitored. Soils used for backfilling should be treated with hydrated lime, alum or polyacrylamides and compacted to 9.3kg/cm² if the soils are dispersive (Hardie, 2009).

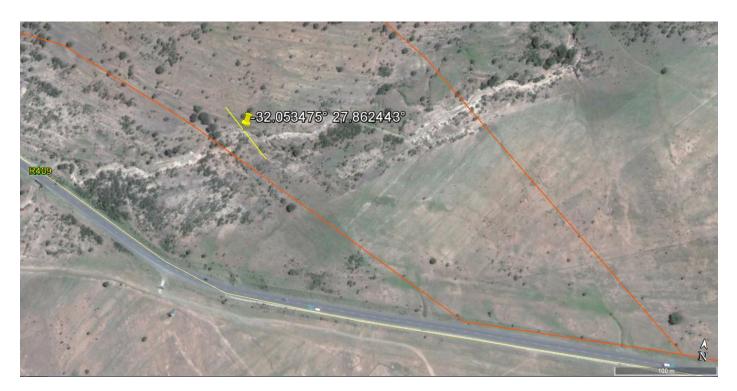
Figure 9: Examples of headcut control structures: a) weir, b) gabion, c) and d) chute (photos by J Buckle).

If water is released from point A or B (Figure 7), then soil erosion on the hillslope will be likely due to steep nature of the slopes (30% slope) and the moderate erodibility of these soils. It is likely that the vegetation cover will increase due to the augmented availability of soil moisture and should limit soil erosion. If the vegetation or soil surface is disturbed along the flow path erosion is likely and an intervention will be needed to prevent erosion. The released water will gain erosive energy over a short distance, thus an erosion resistant lining or energy breaks will be necessary. A lining will create an open canal protecting the soil from eroding. This lining can be temporary and can be removed once the water is no longer released. Energy breaks can be accomplished by installing various pervious barriers that will slow and spread the water. Erosion control fences can be made of geotextiles that are installed vertically along the contour lines (Coetzee, 2016). Due to the steep slope they will need to be installed at 1.5m intervals along the slope (one fence for every 0.5m drop in elevation) and should be wide enough to capture all the flow at each level. Care should be taken to install these correctly so water is not undercutting the fences or concentrated and diverted along the fence, as this will cause further erosion. These erosion fences are best used on low angled slopes and are easily damaged by livestock and fires (Coetzee, 2016).

5.3. Monitoring

The receiving hillslope directly below the discharge point will be the most sensitive to the flow release due to the relatively large flow volume and associated erosional energy and will thus require frequent assessment of erosion. The hillslopes and floodout areas should be monitored to see if the vegetation cover remains dense and if signs of erosion are observed. Fixed point photography will be best along the drainage pathway, having fixed stations 50m apart for

the hillslope sections below pipe ending A or B (Figure 7) and unchanneled floodouts. All gully headcuts along the flow path should be included in the monitoring. Photos should be taken on a monthly basis and erosion control fences should be installed immediately should any surface erosion be detected. If the erosion is more severe (more than 20cm deep) then larger structures will be needed to prevent further incision.


The headcut control structures should be monitored on a monthly basis (visual inspection for signs of erosion around the structure), with immediate remediative action should erosion be observed. The headcuts at the larger floodout Z (Figure 2) should also be assessed and photographed on a monthly basis, so action can be taken to prevent further erosion along the flow path in this wetland. A headcut control structure might be needed should erosion be noted along this flow path through the wetland.

The stream banks and gully sidewalls will erode along narrow sections to adjust to the increased flow. Due to the wide nature of most of the incised channel and gully, this erosion should be negligible.

5.4. Notes on river crossings

The proposed pipeline route has two options for crossing the drainage line in Figure 10.

- The western option is the better of the two proposed options as the channel is relatively confined with no floodplain. The channel is incised (>3,5m) with various gullies along the proposed river crossing.
- The eastern option should be avoided as it crosses a small floodplain with three flood channels. The channel is deeply incised (>3,5m) with an unstable bed.
- An alternative option is suggested along the yellow line in Figure 10 (crossing point at -32.053475°; 27.862443°). The pipe will cross the stream where the stream is most confined (no floodplain or secondary channels/gullies) and has banks that are ~2m high. The floor is sandstone and should be resistant to rapid erosion. Best would be to place the pipe below the surface of the bedrock so as not to dam water in the channel (banks could be/are dispersive and can cause tunnelling around the structure). The banks are likely to be dispersive soils, so erosion of backfilled soil will be an ongoing issue unless treated chemically with hydrated lime, alum or polyacrylamides and compacted to 9.3kg/cm² (Hardie, 2009).

Figure 10: Proposed drainage line crossings of the pipeline (orange line) along the R409 (Google Earth image). The yellow line indicates the best geomorphic location for crossing the stream.

There are several vehicle crossing points along the Toboyi River channel. These crossing points can only be safely used during low flow as there is no bridge or culvert at any of the crossings. Only one of the crossings was used frequently and serves as the main access route to Kunene Village (Figure 11). This crossing (-32.103200°; 27.984985°) could benefit from bridge infrastructure to allow access to the village during higher flow events. However, the peak release flow of 0.27m³.s⁻¹ will result in a flow depth of <10cm deep and should not pose a threat to pedestrians or vehicles. A syphon could be installed with a capacity large enough to convey the released flow below the bed of the crossing point. Care should be taken when using this crossing during times of high runoff, as is currently the case.

Figure 11: Image of the main drift crossing the Toboyi River.

6. Conclusions

The release of 0.27m³.s⁻¹ along the incised Toboyi and Xilinxa Rivers will have very little effect on stream morphology and functioning as these streams are in a degraded state and incised to bedrock along most of the river course. Sensitive areas are limited to the upper reaches of the Toboyi River where buffers exist in the form of floodouts or unchanneled valley bottom wetlands. These floodouts all have active headcuts eroding the stored sediment. Due to the proposed constant flow release the headcut erosion can be accelerated. This can be prevented by installing erosion control structures. The lowest and largest wetland is likely to remain stable without erosion control interventions. The wetlands higher up will need headcut control structures to prevent accelerated erosion. It is recommended that the release pipe be extended to the existing gully as indicated in Figure 7 and water be released in the stable gully bottom. This option will prevent slope erosion and limit erosion along buffer areas. Monitoring of the headcut control structures and headcuts in the largest wetland is advised so remedial action can be taken should erosion be detected. The addition of flow will enhance vegetation growth and attract livestock, which can lead to trampling of the saturated soils. It will thus be necessary to manage livestock along the unchanneled sections of the flow pathway to prevent surface and subsequent gully erosion.

7. References

- Aurecon, 2017. Ngqamakwe Regional Water Supply Phase V : Butterworth Emergency Water Supply Scheme Preliminary Water Supply Infrastructure Options Analysis (No. 106777).
- Beckedahl, H.R., De Villiers, A.B., 2000. Accelerated Erosion by Piping in the Eastern Cape Province, South Africa. South African Geographical Journal 82, 157–162. doi:10.1080/03736245.2000.9713709
- Coetzee, K., 2016. Practical techniques for habitat and wildlife management: a guide for game ranches, conservation areas and farmland. MegaDigital, Cape Town.
- Du Plessis, A., 2000. The response of the two interrelated river components, geomorphology and riparian vegetation, to interbasin water transfers in the Orange-Fish-Sundays river interbasin transfer scheme. Rhodes University, Grahamstown, Eastern Cape, South Africa.
- Hardie, M., 2009. Dispersive soils and their management (Technical Reference Manual). Department of Primary Industries and Water, Tasmania.
- Lane, E.W., 1955. The importance of fluvial morphology in hydraulic engineering. Proceedings (American Society of Civil Engineers) ; v. 81, paper no. 745.
- Russell, W., Sieben, E.J.J., Braack, M., Ellery, W.N., Kotze, D., 2009. WET-RehabMethods: National guidelines and methods for wetland rehabilitation (Water Research Commission Report No. TT341/09). Pretoria, South Africa.
- SANRAL, 2007. Drainage Manual (Fifth edition). Pretoria, South Africa.
- Schulze, R.E., 2007. Soils: Agrohydrological information needs, information sources and decision support (WRC Report Number 1489/1/06), South African Atlas of Climatology and Agrohydrology. Water Research Commission, Pretoria, South Africa.
- Temme, A.J.A.M., Baartman, J.E.M., Botha, G.A., Veldkamp, A., Jongmans, A.G., Wallinga, J., 2008. Climate controls on late Pleistocene landscape evolution of the Okhombe valley, KwaZulu-Natal, South Africa. Geomorphology 99, 280–295. doi:10.1016/j.geomorph.2007.11.006
- Wolman, M.G., Miller, J.P., 1960. Magnitude and Frequency of Forces in Geomorphic Processes. The Journal of Geology 68, 54–74. doi:10.2307/30058255

PART C5: APPENDICES

No appendices